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In this thesis, the high field behavior of both electrons and holes is

studied using a Monte Carlo calculation including a complete band structure.

The Monte Carlo method is particularly useful since it can be applied to

both steady state and transient problems.

The calculated steady state high field properties include the drift

velocity and the impact ionization rate. It is determined theoretically that

in either GaAs or InP the electron and hole steady state drift velocities

are roughly the same. The calculated carrier drift velocities in InP are

*8 larger than in GaAs.

The impact ionization rate of both electrons and holes is calculated

including quantum effects. It is found that the electron impact ionization

rate is larger in GaAs than in InP because of the higher ionization

threshold energy and greater density of states in InP. The electron

* ionization rate is greater than the hole ionization rate in GaAs because the

electrons can drift to energies at or above the threshold energy, which is

the same for both carriers, easier than the holes can. In InP, the hole

ionization rate is larger than the electron ionization rate because the hole
te
threshold energy is smaller than the electron ionization threshold energy.
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Among the transient transport problems examined is velocity overshoot

of both electrons and holes in GaAs, InP and InAs. It is determined that

- there exists a narrow range of parameters such as the applied electric

field, the initial condition (launching energy and momentum), the boundary

* condition at the collecting contact, and the semiconductor dimensions that

result in significant velocity overshoot. The calculations show that the

" overshoot is greater in InP than in GaAs. This is because the valley

separation energies are larger in InP so the electrons are more easily

confined to the low effective mass gamma valley.

Extended velocity overshoot is attainable through use of staircase

heterostructures. The excess kinetic energy gained by the electrons from an

overlaid applied electric field is lost by making the electrons 'climb' a

p series of potential steps. In this way the electrons are confined to the

gamma valley where they can achieve high drift velocities.
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1. INTO ,CrION

High field transport is of prime importance in many device

applications, particularly in avalanche photodiodes, and Gunn devices [1].

High field effects become of increasing importance to FET's [2] and other

devices (3,4] as their physical dimensions shrink in size. Phenomena such as

impact ionization and velocity overshoot can occur which greatly affect

device performance. It is the purpose of this thesis to examine high field

transport and the related phenomena of impact ionization and velocity

overshoot in device structures and bulk material. Of particular interest is

transport in the compound semiconductors, GaAs, InP, InAs and GaSh and

related heterostructures.

Carrier multiplication through impact ionization is essential in the

operation of avalanche photodiodes. Maximum device performance is achieved

if the electron, a, and hole, , ionization coefficients differ greatly

[5,6]. The excess noise in avalanche photodiodes is greatly reduced when the

carrier with the largest ionization coefficient is injected into the high

field region [7]. Consequently, it is essential to identify materials or

device structures [8-10] which have very different electron and hole

ionization coefficients.

Recent experimental measurements [11-13] have indicated that the ratio

of a and 0 is greater than one in GaAs but less than one in InP. It has not

* been demonstrated theoretically why the ratio of a and 0 is reversed in GaAs

and InP. We present detailed calculations of both the electron and hole

impact ionization rates in GaAs and InP and offer an explanation for the

I
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reversal of a/l.

As originally proposed by Ruch [14], velocity overshoot of electrons in

GaAs may lead to a significant increase in carrier velocity over the steady

state value. The recent work of Tang and Hess [15] and Brennan et al. [16]

has shown that there exists a limited set of conditions, the collision free

window, under which velocity overshoot can be appreciable for electrons in

GaAs and InP. However, the distances over which velocity overshoot persists

have been found to be small [15,16].

The extent to which velocity overshoot occurs depends upon the energy

relaxation time which can be related to the valley separation energy. Very

strong energy relaxation greatly limits the effects of velocity overshoot. -i

In most III-V semiconductors at low fields the energy relaxation is

dominated by polar optical scattering [17]. As the electron energy increases

to the threshold for intervalley transfer, the energy relaxation rate

increases drastically due to the presence of very strong deformation

potential scattering. Therefore, it is desirable for high speed transport to

avoid transfer to the satetlite valleys where the energy relaxation is

strong and the effective mass of the electron is large.

Due to the greater valley separation energy in InP, velocity overshoot

persists over a longer distance and for a wider range of applied electric

fields and launching energies than in GaAs [16]. In InAs the valley

separation is even greater such that velocity overshoot is much greater than

in GaAs and InP [18]. However the small energy band gap in InAs gives rise

to a very large impact ionization rate. The impact ionization rate competes

with intervalley scattering such that the electrons impact ionize rather

than scatter to the satellite valleys. In this way the electrons are

b"~
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constrained within the central valley where they can achieve very high drift

velocities. However, this is undesirable in device applications because of

the high carrier multiplication.

Extended velocity overshoot can be achieved another way through use of

staircase heterostructures [19,20]. We have found that very high drift

velocities can be attained by confining the electrons to the gamma valley by

losing excess kinetic energy gained from an overlaid accelerating field. The

mechanism for the energy loss is a series of ascending steps. In this way

transfer to the subsidiary minima is avoided similar to the action of

impact ionization in InAs. However, in the case of staircase

heterostructures there is no carrier multiplication.

All of the calculations reported herein are made using the Monte Carlo

b method with the unique inclusion of a realistic band structure calculated

using either the pseudopotential or K * P methods. The Monte Carlo program

is based on the semiclassical Boltzmann equation with some quantum

mechanical modifications; the phonon scattering rate is calculated using a

field theoretic approach. In Chapter 2 we discuss more fully the theoretical

. basis of the Monte Carlo program in both steady state and transient

calculations. Chapters 3 and 4 discuss electron and hole impact ionization

and the behavior of a and P. The special case of hole impact ionization in

" GaSb and All xGaxSb and the nature of the 'resonance' are discussed within

Chapter 5. Transient electronic transport in GaAs, InP, InAs, and

heterostructures is discussed in Chapter 6. Chapter 7 describes transient

hole transport in GaAs and its relation to electronic transport..g ' z

r"
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2. SMNEAZY OF SEICL.ASSICAL AND QUANrUM UANSPORT THEY

2.1 Introduction

The principal problem in hot electron transport theory is to describe

how the electron or hole distribution function is modified by an applied

electric field. The Boltzmann equation, which describes charge transport, is

very difficult to solve except in very few cases which are usually not

applicable to real systems. Furthermore, since most transport quantities of

interest are derived from averages over many physical processes the

formulation of reliable microscopic models for the physical system under

investigation is difficult. In order to get - result by directly solving the

Boltzmann equation one must make drastic approximations which usually are

invalid [21].

To overcome the difficulties in analytically solving the Boltzmann

transport equation, numerical methods have been developed. Chief amongst

these is the Monte Carlo method which was first used in semiconductor

transport theory by lurosawa [22] in 1966. The Monte Carlo method, as

applied to charge transport in semiconductors, consists of a simulation of

the trajectory of one or more electrons in a crystal subject to applied

electric fields and phonon or carrier scattering mechanisms. The carrier

free flight time and the phonon scattering agents are selected

stochastically in accordance with some given probabilities describing the

microscopic process. Consequently, any Monte Carlo method relies on the

generation of a random number sequence with a given probability

distribution.

r
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In this thesis, we are primarily concerned, with modeling carrier

transport under two conditions, either steady state or transient transport.

In the case of steady state transport, it is desired to model the carriers'

response to an applied field in a homogeneous, bulk material with infinite

n boundary conditions. In general, it is sufficient to model the motion of one

carrier only; from ergodicity it is assumed that a sufficiently long path of

one trial carrier will effectively reproduce the response of an ensemble of

carriers. In transient transport the carriers are subjected to spatial or

temporal inhomogeneities. The initial and boundary conditions are of

particular importance. It is necessary then to simulate a large number of

F, electrons and trace their dynamic histories in order to obtain the desired

information on the process of interest.

The semiclassical Monte Carlo method for both steady state and

transient transport is discussed thoroughly elsewhere [21,23-27]. We will

refrain from further discussion here of the mechanics of the Monte Carlo

method. The details of the transient velocity analysis are summarized in

Appendix 1. We will discuss the limitations of semiclassical transport in

Section 2.2, and the basis of quantum transport theory in Section 2.3.

2.2 Limitations of Semiclassical Transport Theory

The basis of semiclassical transport theory is the Boltzmann equation,

"* which is of the form

+_ -f (
dff drift Ttlscatr

where

' Odl ff or (2.2)

I,



6

drift 3k (2.3)

and

f()(-f())S(k',k) - f)(-(2.4)
"f scatt Elf"-.-

In the case of nondegenerate semiconductors and elastic collisions, S(k',k)

S(kk'), Equation 2.4 becomes

Iastat k (2.5)

The Boltzmann equation can be applied to a large variety of transport

. problems with much success. However it contains several implicit assumptions

which may not always be valid. The most basic limitation within the

Boltzmann equation is the assumption that the distribution function, f, can

always be defined in phase space, O(x,p). In light of the Uncertainty '.

Principle, one cannot strictly define a phase space distribution function.

Consequently, it makes no sense to discuss an equation for f(k,x,t). It

appears then that the Boltzmann equation is not a legitimate means of

describing quantum transport processes if both the real space position and

the momentum are needed simultaneously.

Other implicit assumptions made in the Boltzmann transport equation are

[28-301,

(1) The electronic states are stationary and free-electron-like with a

well defined momentum, k.

(2) The duration of the collision, vc is much smaller than the mean free -

time, v, between collisions, > :" Only the asymptotic initial and final

states of each collision are considered.

7.",-
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" time, v, between collisions, v )> v Only the asymptotic initial and final

. states of each collision are considered.

(3) The effects of impurities and phonons can be considered as

perturbations causing weak scattering amongst the Bloch states.

P1m The above features, which are assumed in the Boltzmann formalism, are

the basis for its failure in certain applications. When the mean time

S.between collisions, v, is of the order of the collision duration, vc' the

* elementary treatment of collisions in the Boltzmann equation must be

reconsidered. Two new effects become important, multiple scattering and the

intra-collisional field effect. If v - vcs the electron may be under the

influence of more than one scattering center at the same time (29] and

multiple scatterings may occur. Under strong driving forces, energy and

momentum can be transferred to the carrier during the collision as well as

between collisions. The intra-collisional field effect then alters the

energy gained or lost by the carrier during the collision. A strong

scattering rate voids the assumption that the electronic states are long

lived and free-electron-like. In this situation the effects of the phonons

and impurities can no longer be considered as perturbations. Other effects

such as size quantization, which occurs in very small systems, and many body

- effects also place limitations upon the validity of the Boltzmann equation.

It is not surprising, therefore, that alternative approaches have been

taken in transport theory. Unfortunately, alternative formalisms to the

. Boltzmann equation lack its relative conceptual and mathematical simplicity.

.' In the next section we will discuss transport theories which overcome the

I limitations of the Boltzmann equation.



-7-J

8

2.3 Quantum Transport Theory

The basis of quantum transport, as in classical transport, is the use

of an ensemble description. The essential difference between classical and

quantum statistical mechanics is the means by which the ensemble averaging

is performed. In classical mechanics, macroscopically observable entities

are identified with ensemble averages. In quantum mechanics a macroscopic

observable is determined by taking quantum mechanical matrix elements and

ensemble averages together. The formalism developed to accomplish this is

that of the density matrix [31,32].

In statistical mechanics we consider systems that interact with the

external world. The wave function for the entire system, 6(xq), depends on

both the coordinates of the system under consideration, x, and the

coordinates of the external world, q. We can establish the density matrix by

supposing that the state vector of the system, P(x,q,t) can be expanded

using a complete orthonormal set of vectors, u (x) as

t(x,q,t) = Z C (q,t) u (x) (2.6)
n n

n

The density matrix is defined by

p(','') = fdqO*(x,q)O(x,q) • (2.7)

After substituting Equation 2.6 into Equation 2.7 the elements of the

density matrix are found to be

, C *C (2.8)

where the bar denotes an ensemble average, average over q.

-71
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The density matrix can be used to calculate the ensemble average of the

expectation value of an observable, A, as

<A>- <O,A(# L C- Ce A,. PA A Tr(P A) . (2.9)
m, n m, n

The time dependence of the density matrix is given as [33]

iH = ,o1 (2.o10)

at

which is analogous to the Liouville equation. It has been shown that

transport in a quantum system can be correctly described using the density

matrix and Equation 2.10 [34].

The use of the density matrix in practical problems is limited by its

great complexity. Kohn and Luttinger [34,35] have used the density matrix

formalism to solve a simple system, noninteracting free electrons scattered

by impurity centers in the presence of a uniform electric field. By assuming

that the interaction between the electrons and the impurity centers is weak,

the density matrix for the system can be calculated using a perturbation

expansion. To the lowest order in the perturbation, the diagonal elements

*of the density matrix satisfy the usual Boltzmann equation [34]. In higher

orders the quantum effects become apparent and the Boltzmann equation is no

. longer valid [33,34]. New effect. begin to appear that are not usually

apparent in classical transport theory. he principal effect is that energy

is not conserved due to the Uncertainty Principle [33].

In principle, one can calculate all transport properties using the

density matrix approach and the mechanics presented by Kohn and Luttinger

[34,351. Once the density matrix is known to the desired order of accuracy,

macroscopic observables of the system can be calculated through the use of

|. .
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Equation 2.9. Unfortunately, the higher order equations for the density

matrix are very complicated and unwieldy if not impossible to use. It is

necessary then to develop alternative approaches to the quantum transport

problem.

One of the first attempts to simplify the density matrix approach was -

made by Wigner [363. He developed a particular distribution function, now

known as the Wigner distribution function. Because of its special

properties, the Wigner function can be used to calculate observables in a

manner analogous to that of classical theory, by directly integrating the

product of the observable and the Wigner function over all phase space.

Since no quantum mechanical phase space distribution can exist, the Wigner

function cannot be interpreted as a probability function. Its use is a

matter of convenience rather than principle.

The Wigner function is defined for a single coordinate and momentum as

(331

PPCxP) = F dy 7(x + y/2) (x-v/2)e iPY/ '1 (2.11)

where 4(x) is the time dependent state of the system in the coordinate

representation. The main utility of the Wigner function stems from its

unusual properties,

2(f?(x,p)dp. = C (x) E(x). 21)-

and

J? ((,)dx = :*(p) - (p) 2-,3)-

where

. : . .. . .. . .~~~ ~~~..................-". .. ,.__--:. _ .8 L _= n .___ _ __ _ _ __ _ . _ ___
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(p) e e px /  (x)dx (2.14)

The importance of the Wigner function is that for any classical

quantity, Q(p,x), its quantum mechanical ensemble average can be computed by

Q> = J///xdp Qp,x) Pw(x,p) (2.15)

This suggests that it is possible to translate the results of classical

transport theory into quantum transport by simply replacing the classical

distribution function by the Wigner function. From the time evolution of

" P (x,p), one recovers the classical collisionless Boltzmann equation in the

B limit as h approaches zero [33].

The difficulties inherent in the Wigner function approach, aside from

- its construction for a complicated system, arise because it is neither

*I positive definite, it has no probability interpretation, nor unique. The

Wigner function cannot be viewed as the quantum analog of the classical

distribution function. It is only a "trick" which may simplify quantum

mechanical ensemble averaging.

From the above discussion, it is apparent that the use of formal

quantum transport theory is immensely difficult and impractical to use in

real problems. The work of Scott and Moore (37] has shown that for problems

of the kind discussed below the basic physics of quantum transport theory

can be incorporated into a Boltzmann-like transport equation for

quasiparticles. The complicated physics of an interacting system is replaced

by a quasiparticle system, one with single particle characteristics. The

.....................................
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quasiparticles, electrons dressed by a phonon cloud [38], become the

carriers of interest.

The quasiparticle approach is well suited to the Monte Carlo method

since it involves single particle transport. The use of quasiparticles

alters the physical picture two ways. An energy level shift arises from the

real part of the self-energy (due to the interaction of the electron with

the phonons), and the lifetime of the state is finite. Therefore, the sharp,

unperturbed momentum states in the classical picture are replaced by

broadened, finite lifetime states in the quasiparticle picture. The effect

of the self-energy can be incorporated into the electron-phonon scattering

rate [24,39]. In Chapter 3 we will discuss the details of the self-energy

calculation and how the scattering rate is calculated using it.

..... .... . . . . . . .. .
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3. 7SMhDY STAIR HIGH FIELD TRANSPORT IN Gakso hP, AI hAs

3.1 Introduction

As the need for faster electronic devices grows, materials such as the

III-V compound semiconductors will play an eve. increasing role in new

device technology [40-431. The unique physical properties of materials such

as GaAs, InP, and InAs make them especially attractive in different device

applications. At low energies the electrons in these materials reside

|F entirely within the central valley where they can achieve very high drift

velocities [44-46]. As the applied electric field increases, the electrons

are heated sufficiently such that intervalley transfer can occur. When the

electrons are scattered from the central valley to the subsidiary minima,

their effective mass changes significantly resulting in a substantial

decrease in carrier velocity [23,46,47]. Consequently, it is desirable to

H* choose materials with large intervalley separation energies in order to

limit intervalley transfer and to achieve high speed. Of the three

. materials, GaAs, InP, and InAs, the satellite valley separation energy is

greatest in InAs and smallest in GaAs. Based on this criterion, InAs would

appear to be the most favorable material for high speed device applications,

* but its strong impact ionization rate makes it undesirable.

Reduced carrier transit time through a device structure can also be

achieved by scaling down the device dimensions. However, the applied voltage

cannot be scaled down along with the physical dimensions. Very high fieldsr
may then arise throughout the structure. Phenomena such as impact ionization

" can become important which may have an adverse effect upon device

, • n =-~~~~~~~~~~~~~..=.... . . . . .. . . ....... ~ d.dd-~ldahmd u I -•-.. . •.:.-.. B -•
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performance (48]. In materials such as GaAs and InP, where the energy band

gap is relatively large, the electrons must be heated to high energies in

order for impact ionization to occur. Narrow band gap semiconductors, such

as InAs, have a low impact ionization threshold leading to a high ionization ".

rate at low electron energies. Each type of material provides different

advantages in various applications [1].

This chapter is devoted to the study of the steady state high field

electronic transport properties of GaAs, InP, and InAs. In Section 3.2 we

discuss the conduction band structure of GaAs and ImP. The steady state

electron drift velocity is discussed in Section 3.3. The various scattering

mechanisms and the field theoretic approach to the scattering rate are

discussed in Section 3.4. Finally, the experimental and theoretical results

are presented and discussed in Section 3.5.

3.2 Band Structure

The conduction band structure is calculated using the empirical

pseudopotential method of Cohen and Bergstresser [49]. The band structures

of GaAs and InP are presented in Figures 3.1 and 3.2 respectively. As seen

from these figures, the energy band gap of GaAs at 300 K is 1.42 eV,

slightly larger than the band gap of InP, 1.35 eV. The band gap of InAs is

much smaller, .36 eV at 300 K. The different energy band gap values greatly

influence the impact ionization rates in each material as we shall see.

Because of energy conservation, an electron must have an energy at

least as large as the band gap in order to impact ionize. Therefore in large

band gap semiconductors, the carriers must be high up in the band before

they can impact ionize. In the past, most theoretical studies [50-55] of

27
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impact ionization have been based upon phenomenological fits which contain

I several adjustable parameters whose physical significance is not well

runderstood. The most widely used of these theories is that given by Baraff

[2], but the parameters employed in Baraff's theory are difficult if not

impossible to calculate from first principles. The recent work of Shichijo

and Hess [56] has provided a complete theory of impact ionization which can

* - calculate the impact ionization parameters from first principles. The

success of their theory is due to the abandonment of the effective mass

approximation, which totally breaks down at high energies, in favor of a

realistic band structure calculated using the pseudopotential method.

Figure 3.3 shows a cross section of the Brillouin zone. The isoenergy

lines corresponding to this cross section for the first conduction band in

b InP are depicted in Figure 3.4. Notice that the bands are strongly warped

and nonparabolic at high energy. Figure 3.5 shcws another cross section of

" -" the Brillouin zone. Figure 3.6 llustrates the isoenergy lines corresponding

L [to this cross section for the first conduction band in InP. Again we see

that the bands are strongly warped at high energy. Therefore it is essential

* "in high energy transport theory that a realistic band structure be used.

3.3 Steady State Drift Velocity Theory

*. The electron-phonon scattering rate depends upon parameters such as the

- ~ intervalley phonon energies and coupling constants which are exceedingly

* -* difficult to measure directly. Their values are often ascortained by fitting

the results of Monte Carlo calculations to more easily measured quantities

[23,57] such as the electron drift velocity. From a comparison of the

calculated and the experimental electron drift velocities, over a large

range of applied electric fields, the overall electron-phonon scattering

*- *. * .. * . . - * .* .*. * -- * - . --. * -** . * *- * . . . .. . *- - .. . . . -. . -
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impact ionization have been based upon phenomenological fits which contain

P several adjustable parameters whose physical significance is not well

understood. The most widely used of these theories is that given by Baraff

[52]. but the parameters employed in Baraff's theory are difficult if not

*. impossible to calculate from first principles. The recent work of Shichijo

and Hess [56] has provided a complete theory of impact ionization which can

calculate the impact ionization parameters from first principles. The

success of their theory is due to the abandonment of the effective mass

approximation, which totally breaks down at high energies, in favor of a

realistic band structure calculated using the pseudopotential method.

Figure 3.3 shows a cross section of the Brillouin zone. The isoenergy

lines corresponding to this cross section for the first conduction band in

InP are depicted in Figure 3.4. Notice that the bands are strongly warped

and nonparabolic at high energy. Figure 3.5 shows another cross section of

* the Brillouin zone. Figure 3.6 llustrates the isoenergy lines corresponding

* to this cross section for the first conduction band in InP. Again we see

that the bands are strongly warped at high energy. Therefore it is essential

in high energy transport theory that a realistic band structure be used.

3.3 Steady State Drift Velocity Theory

The electron-phonon scattering rate depends upon parameters such as the

intervalley phonon energies and coupling constants which are exceedingly

difficult to measure directly. Their values are often ascertained by fitting

the results of Monte Carlo calculations to more easily measured quantities

[ [23,57] such as the electron drift velocity. From a comparison of the

calculated and the experimental electron drift velocities, over a large

range of applied electric fields, the overall electron-phonon scattering
1,i

. . ... , . . _ % . .*-
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rFig. 3.4: Isoenergy lines of the first conduction band in InP in the cross
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Fil. 3.6: Isoenergy lines of the first conduction band in InP in the cross
section shown in Figure 3.5. The numbers represent the energies
measured from the gamma minimum in eV.
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rate can be determined. Previous Monte Carlo calculations [23,57] have

determined a set of coupling constants and phonon energies for electron-

phonon scattering in GaAs. These results are in excellent agreement with

experimental measurements of the low field drift velocity [581.

We have used the results of Littlejohn et al. [571 for the intervalley

phonon energies and coupling constants for InP but have found that for GaAs

we obtain a better fit to the experimental drift velocity measurements

[58,59], Figure 3.7, if we use slightly lower values for the intervalley

phonon energies. The parameters used in our computations for GaAs are

collected in Appendix 2, Table A2.1. The parameters used in the Monte Carlo

program for transport in InP are collected in Appendix 2, Table A2.2. As can

be seen from Figure 3.8 the Monte Carlo calculation of the steady state

drift velocity agrees well with the experimental data [60] for InP. The

electron-phonon scattering rates for GaAs and InP derived from the drift

velocity data are presented in Figures 3.9 and 3.10 respectively.

The material parameters used for InAs are listed in Appendix 2, Table

A2.3. Due to the lack of extensive drift velocity data in InAs we have used

the same intervalley phonon energies as for InP. Because of the similar

deformation potentials between all three compounds [61,62], the intervalley

coupling constants are taken to be the same. Since the satellite valleys are

separated from the central valley by extremely large energies, the effect of

intervalley scattering in InAs on the drift velocity is only important at

very high applied fields. Figure 3.11 shows the steady state drift velocity

in InAs as a function of field in the presence of impact ionization. Notice

that the peak drift velocity is very high, 8.0xl07 cm/sec, at a field of 75

kV/cm. If impact ionization does not occur (which can be achieved
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experimentally by using very short current pulses), then the peak drift

velocity in InAs is much lower and occurs at a much lower field as can be

seen from Figure 3.12. In the absence of impact ionization the electron

energy shows the usual 'runaway' effect; more energy is gained from the

field than is lost to the phonons and the threshold for intervalley transfer

is easily reached. The impact ionization acts to limit the electrons to low

energy so they stay within the central valley. The valley separation

energies are so large that few electrons survive impact ionization while

within the central valley. After impact ionizing, the electron loses most of

its energy and starts again near the gamma point. Again the electron drifts

in the field and reaches the threshold for impact ionization well before it

reaches the threshold for intervalley transfer. Unless the field is

extremely high such that the electron can reach the intervalley threshold

without collisions or by suffering only polar optical scatterings, it will

impact ionize and will restart near gamma. In this way, the electrons are

restricted to the central valley where their drift velocities can become

very large.

3.4 Phonon Scattering Rate

At high applied electric fields many of the approximations used

previously [23,57] in the calculation of the scattering rate are no longer

valid. As mentioned above, the effective mass approximation breaks down away

from the band edge. Therefore, scattering rates determined using the

effective mass approximation are unreliable at high electron energies. The

semi-classical approximation also breaks down at high energy [63] due to the

increased electron-phonon scattering rate. Scattering processes in the

semi-classical approximation, as mentioned in Chapter 2, are treated as



29

0

o do
a ta

- a

(o a 0
a) .1 is

Ck
C:
0.4

4a
.. L 0

'0.
UU

LLLI

CD

* a

CD Lq L 0 OQ
C~j C ~ 1--

PGS/~ ~ ~ ~ LU)4a1A4



V" 30

transitions between sharp, stationary, unperturbed momentum states. However, _

at high energy the classical picture of a free electron is no longer valid

and one must replace it with the quasiparticle formulation.

In the quasiparticle picture, an additional energy, the self-energy,

1(k), must be added to the particle. Figure 3.13 shows diagrammatically the

self- energy of the quasiparticle. The self-energy, Z(k), can be calculated

neglecting the vertex correction as follows [64,65]

3

(kE) ,f (27)' V2 W D(q,t%,) G(k-q, E-fw) (3.1)

where G is the electron Green function, D is the phonon Green function, and

V(q) is the electron-phonon coupling. The electron Green function can be

expressed as [65]

-i I
S(k,E)

E - E(k) - E(kE) + i 6 (3.2)

while the phonon Green function has the form [65],

D - i 1 (3.3)
•q f1 w- ,- + i + W' -

1q q

where 6 is a positive infinitesimal quantity. After substituting the

expressions for G(k.E) and D(q,hw) into Equation 3.1 and evaluating the -

integral over w by use of contour integration , the expression for (kE)

becomes [24]

)(+) (3.4)
! .)3 -F.,'- Z.('" - (" -h°) .

q

Using the approximation of a constant deformation potential, g2 (k+q) becomes

and Equation 3.4 can be :e-expressed as an integral over energy as

dE') "3.3f)
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Fig. 3.13: DiagTammatiC representation of the electron-phonon interaction.
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where we have taken w to be independent of q and p(E) is the electron

density of states. If we consider the weak coupling limit (g<<l) then the

term Z(E-L) can be neglected in the denominator of Equation 3.5. Applying

2"
the Principal Value Theorem to the above integral yields "

(E) = f f dE' g2 p(E ' ) 2 p(E-hw)E-hw-E' - ~ (-~).(3.6)-

From Equation 3.6 the imaginary part of -(E) is clearly

2
r(E) = irg p(E-hw) (3.7)

while the real part is

A(E) - f dE'g 2 P(E') (3.8P E-hw-E'(38

Physically, the real part, A(E), corresponds to a level shift of the energy

eigenstates while the imaginary part, F(E), gives rise to a finite lifetime

of the state [24]. Since the state has only a finite lifetime, via the

Uncertainty Principle, the energy of the level is broadened.

It is easy to show [241 that the lifetime of the state can be expressed

as

6 k =  2 r (k) (3.9)

To first orderl/?k corresponds to the total scattering rate of the particle

in the state k [24]. Neglecting the vertex correction [641, -(E(k)) is -

simply <kiTik> where T is the transition matrix [62]. For elastic

scattering the scattering probability is conserved and the optical theorem

gives [661
-2 "

CfOT I T (3.10)

- -... .. .- . . . . . . . . .. .~--:.v&.:-
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The total scattering rate is then

-E vTTk " 2 " (3.11)

Substituting for Im(F(E)) one obtains in the limit of weak coupling
2

1/r(E) -g P(E-h) (3.12)

where p(E-1w) is the density of states and g is the coupling constant. For

stronger coupling, the integral equation, Equation 3.5, must be solved.

This has been accomplished by Tang (24] and Chang (391. In the Monte Carlo

calculations the total scattering rate at high energies is replaced by the

above relation. The self-energy effectively reduces the overall scattering

rate.

3.5 Electron Imvact Ionization

The impact ionization data for both GaAs and InP have been calculated

using this modified scattering rate. The results are presented in Figures

3.14 and 3.13 respectively. For GaAs, the calculated values match the

experimental results of Bulman et al. (11] over a wide range of applied

fields. Calculations are made for two applied field directions <100> and

<111>. At high electric fields no appreciable anisotropy exists in

agreement with our previous findings. At low electric fields, the
L

calculation is extremely time-consuming because only few ionization events

occur. Therefore there exists a large statistical uncertainty in the value

of the calculated impact ionization rate. Nevertheless the results for the

<100> crystallographic direction are in good agreement with the experiments.

In the limit of very low field, an anisotropy seems to develop and the

results for a in the <111> direction are somewhat lower than the <100>
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Fig. 3.14: Electron impact ionization rate in GaAs as a functioni of inverse
electric field. The error bars are based on convergence error
estimates from the calculation. The experimental data are from
Bulman at al. [11] and from Pearsall at al. [691.
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result. However, only six ionization events have been simulated at an

expense of a day CPU time on a VAX 750 super-mini-computer. There has been

some controversy concerning the anisotropy of a in the past [67,68]. Notice

that the calculated anisotropy is at much lower fields than observed by

Pearsall et al. [69] and also much smaller in magnitude. We therefore have

to conclude that the measured anisotropy is caused by effects not included

in our simulation (e.g., transient phenomena or impurity correlations etc.).

The small anisotropy seen from the Monte Carlo calculation seems connected

with the fact that at low enough fields the electron distribution is

centered closer to k=0 than at high fields. Since the distribution is

cooler, those electrons which reach the ionization threshold do so only

after gaining much energy from the field. This requires that the electrons

not be scattered much from the field direction, similar to Shockley's lucky -;

electron theory [51]. A small anisotropy at low fields would be expected

then because the ionization threshold may be different in different

directions [70]. Also, due to the anisotropy of the band structure, an

electron will gain different amounts of energy along different field

directions per drift. The lucky electrons play an insignificant role at

high fields [56] because the distribution is now much hotter which results

in the electrons being distributed throughout the Brillouin zone. Since the

vast majority of ionizing electrons start from anywhere in the Brillouin

zone, the directional dependence of the rate vanishes. It is possible that

the proper inclusion of the final state broadening may smear out the .

observed anisotropy at low fields.

The impact ionization rate is much lower in InP than in GaAs as can be

seen from a comparison of Figures 3.14 and 3.15. In our calculation of the

. . . . ... . . . *. . .
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impact ionization rate in InP we use the same intervalley coupling constants

as were used in GaAs. This is appropriate since the band structures of the

two materials are very similar [49] and it is believed that the deformation

potentials are also (61,62]. The threshold for impact ionization is roughly

20% higher in InP than in GaAs. As can be seen from Figure 3.16, the

density of states rises more abruptly and reaches a higher peak in InP than

in GaAs. The scattering rate is roughly proportional to the density of

states resulting In a higher scattering rate within InP than in GaAs. Also

since the density of states is much greater in InP below the impact

ionization threshold energy it is more difficult for an electron to drift to

states at and above threshold. Hence fewer electrons will reach high enough

energies for impact ionization to occur. The large difference in the impact

ionization rate between these two materials therefore is mainly due to the

density of states at high energy and to the higher threshold in InP.

It should be noted that the anisotropy in the impact ionization rate

does not appear in InP. This is because the scattering rate is higher so

the electrons are distributed throughout the Brillouin zone removing any

directional dependence to the ionization rate. As in the case of GaAs, an

anisotropy may appear for lower fields, but due to the lower ionization

"" rates, the Monte Carlo simulation is too time consuming.

Due to its narrow band gap, impact ionization in InAs occurs at much

lower fields than in either GaAs or InP. The threshold, Eth, for impact

." ionization in InAs can be readily calculated using the Anderson and Crowell

criteria [71] since the parabolic approximation to the energy band is

acceptable at low energy. Eth is found to be .383 eV at 300 K. Since the

" satellite valley separation energies are greater than 1 eV most of the
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Fig. 3.16: Density of states of the first conduction band in GaAs and Inp
as a function of energy.
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ionizations involve electrons within the central valley. In pure InAs the

only important scattering mechanism in the central valley is produced by

polar optical phonons [171. Polar optical scattering is much weaker than

intervalley scattering [171. Therefore in the range in which impact

% ionization occurs in InAs the self-energy effect is negligible. The impact

ionization results for InAs are presented in Figures 3.17 and 3.18. The

impact ionization rate is determined at both 300 K and 77 K. The rate

deviates strongly from the exponential lIE law as the temperature varies

from 77 to 300 K. Notice that the impact ionization rate at both

temperatures is extremely high at rather low electric fields.

It is interesting to note that the impact ionization rate is higher in

InAs at 300 K than at 77 K as can be seen from a comparison of Figures 3.17

and 3.18. The band gap energy decreases with increasing temperature. In

narrow band gap semiconductors, such as InAs, the change in the band gap

energy is more than 10. as the temperature increases from 77 to 300 K.

Consequently, the impact ionization threshold energy is smaller at 300 K

than at 77 K by roughly the same percentage (since the threshold energy is

sensitive to the band gap energy). The strength of the impact ionization

- mechanism is greater at 300 than at 77 K. In most semiconductors, such as

GaAs and InP, the decrease in the impact ionization threshold energy is

offset by the increased electron-phonon scattering rate at higher

temperature. However in InAs, the electrons are confined to the gamma valley

and only interact with polar optical phonons. The increase in the polar

optical phonon scattering rate is insufficient and the impact ionization

rate is higher at higher temperature.

.-. . . * . . - * . *-. . . .
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Fig. 3.17: Electron impact ionization rate in tuAs as a function of inverse
electric field. Since many events occur, the convergence of the
program is excellent and the resulting error is small. The
calculation is made at a temperature of 300 K.
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4. STEADY STATE HIGH FID TANSPORT OF HOLES IN GaAs AND UP

4.1 Introduction

Past experimental measurements of the impact ionization rate in

compound semiconductors have all indicated that there is no significant

anisotropy in the hole impact ionization rate [69]. Consequently, it is

believed that if there is an anisotropy in the ratio of the electron and

hole ionization rates it is due to the electron ionization rate and not the

hole ionization rate. Current experimental measurements, though they do not

show an anisotropy in the ratio of electron, a, and hole, , ionization

coefficients, reveal that the ratio of a/0 is greater than one in GaAs at

room temperature while a/0 is less than one in InP at 300 K [11-13].

It has not been demonstrated from first principles why the ratio of

electron, a, over hole, 0, ionization coefficients is reversed between GaAs

and InP. The recent work of Ridley [72,73] suggests that the ratio of a over

can be entirely determined by the ratio of ionization threshold energies.

However his results show that the ratio of a over 0 is less than one for

both GaAs and InP over a wide range of applied fields, in direct

contradiction to recent experimental results [11-13]. In this chapter,

calculations of the hole impact ionization rate and steady state drift -

velocity in GaAs and InP are presented using the Monte Carlo method with the

unique inclusion of a realistic band structure based on a K P calculation

[74]. We demonstrate how the reversal of the ratio of the electron and hole

ionization coefficients in GaAs and InP can be understood based upon the

data presented both here and in Chapter 3. Along with the results described

- -"." .> t-... -' .>- -.:....- '...-.-'.". -.* -.-... -% ' '...... . -. ..- o".'-..'- . ." . . ..-. '.<.- " .
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in Chapter 3, this work represents a first step towards a complete theory of

electron and hole impact ionization in semiconductors.

4.2. Band Structure

The valence band structure is calculated using the K *P method of Kane

[74]. The effect of the spin-orbit interaction is included in Kane's

calculation which produces the split-off band. It is essential to include

the effects of the split-off band in hole transport calculations because of

its influence upon the other bands, particularly the light hole band. The

split-off band repels the other bands in such a way that they do not cross.

If the split-off band is not included in the calculation, the light hole

band appears to be parabolic and isotropic [49]. As can be seen from Figures

3.1 and 3.2. it is clear that when the split-off band is included the light

hole band is strongly warped and follows the heavy hole band quite closely

at high energy. This is a very different result from models that neglect the

spin-orbit interaction. Consequently, the effective mass approximation is an

unreliable description of the light and heavy hole bands.

Aside from its effect upon the other valence bands, the split-off band

is of direct importance in hole transport. Due to the small density of

states of the split-off band, holes within it can be accelerated to high

energies by an applied electric field. At the gamma point the split-off band

is non-degenerate with the heavy and light hole bands. The energy difference

between the bands is known as the split-off energy. When the split-off

energy is large, much greater than kT, the split-off band is virtually

unoccupied at zero applied electric field. The holes must be scattered over

to the split-off band from either the heavy or light hole bands by either

deformation potential or polar optical scattering. Of course, by energy

.- ..' : :... ,. -'i-i--..i . *." . . "-.-..-'. . -'-.-.."..-.. . . - .-.-.-.. ",---.---.-,.. .: ' -' -: -: ""-.-- - "- , '. ,' .-- -.
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conservation, a hole must drift to an energy at or above the split-off

energy before it can be scattered to the split-off band. As we shall see,

the magnitude of the split-off energy can greatly affect the importance of -.

the split-off band in impact ionization.

To further illustrate the nature of the valence bands, particularly the

heavy and light hole bands at high energy, cross sectional cuts through the

Brillouin zone are presented in Figures 4.1 and 4.2 for GaAs in the cross

section of Figure 3.3. As can be readily seen from these figures, the heavy

and light hole bands deviate strongly from parabolic behavior and show a

very complicated structure away from the gamma point. Even at very small

energy, < 20 meV, the bands are greatly distorted [75]. Nonparabolic

behavior of the bands is equally as strong in InP. Comparable drawings of

the isoenergy lines in the Brillouin zone cut of Figure 3.3 in InP show a

strong resemblance to those for GaAs as can be seen from Figures 4.3 and

4.4. The forms of the heavy and light hole bands in GaAs in the cross

sectional cut of Figure 3.5 are displayed in Figures 4.5 and 4.6. The

isoenergy lines in the same cross sectional cut in the Brillouin zone is

illustrated in InP in Figures 4.7 and 4.8. Figures 4.1-4.8 clearly

illustrate that any successful theory of high energy transport must take

into account the full nature of the band structure.

4.3 Phonon Scatterina Rate

In the valence band the predominant scattering mechanisms are polar -.

optical and deformation potential scattering when the effects of impurities

can be ignored [76,77]. For simplicity, we neglect impurity scattering in

our calculations. The total scattering rate includes both intraband and

interband scattering and is based on the total density of states of all

2...................................-......... ... . ...........
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three valence bands using the field theoretic approach discussed in Chapter

3. The individual phonon scattering mechanisms are calculated using the

approach of Costato and Reggiani [76,771. The principal scattering agents

are acoustic, nonpolar, and polar optical phonons.

The acoustic phonon scattering rate is calculated using the method of

Canali et al. [781. In their calculation, instead of the usual

equipartition approximation, the Bose-Einstein distribution function is

expanded in a power series and integrated with the transition rate to obtain

the total scattering rate. At high energy, the energy lost or gained in an

- acoustic scattering event is not negligible which makes the equipartition

approximation questionable [24]. The acoustic phonon coupling constant, E 2"

is given by [76]

2 2 2 d2 (41E2 1/3 +2/3 -a + Z- 2( + 1/2 d (4.1)

where s. is the longitudinal sound velocity and st is the transverse sound

velocity. The values of CA and C t are given as

C- 1/5 (3 C11 +2 C12 +4 C44 )

(4.2)
Ct  1/5 (C1 C 1 2 +3 C4 4)

where Cl1  C1 2  and C4 4 are the crystal elastic constants. All of the

parameters used in the calculations are collected in Tables A2.4 and A2.5 of

Appendix 2 for GaAs and InP respectively.

The transition probabilities due to nonpolar optical scattering can be

written in a form analogous to that for acoustic phonon scattering [79]

containing the optical deformation potential constant, do. However, d0

cannot be directly determined from piezoresistance data (76]. It is useful
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then to formulate the nonpolar optical scattering rate in terms of a more

easily determined quantity. The optical phonon coupling constant, (DK)2, can

be determined from the acoustic deformation potential constant as [80]

(DK)2  2 El (4.3)O F 4 SA

where o00 is the optical phonon frequency.

The results of Costato and Reggiani [77] show that the overlar.

corrections due to the mixing of Bloch states introduce significant

corrections to the overall hole-optical phonon scattering rate. We have

included these effects into our calculation. The parameters used in the

calculation of the polar optical scattering rate are also collected in

Tables A2.4 and A2.5 of Appendix 2. The details of the scattering rate

calculations for all three mechanisms are presented in Appendix 3.

The total hole-phonon scattering rates are calculated for both GaAs and

InP and are presented in Figures 4.9 and 4.10. The rates depicted in these

figures include only the hole-phonon processes and do not include impact

ionization. The overall scattering rate including the effects of impact

ionization is presented in Figure 4.11 for GaAs and in Figure 4.12 for InP.

Impact ionization is treated as a separate scattering mechanism in

accordance with the Keldysh theory [53]. There exist two adjustable

parameters, Eth and p, in the Keldysh theory. Eth is the impact ionization

threshold energy while p is a numerical multiplicative factor which varies -V

for each material. These parameters are chosen to fit the calculated impact

ionization rate to the experimental results. The work of Tang [24] has

demonstrated that previous theories for impact ionization using Keldysh's

formalism with p >> 1 are incorrect since the high energy tail of the energy

*J. a- ~ V a°
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distribution function is overly suppressed. By restricting p to low values,

- 10.0 or less, the range of acceptable values for the impact ionization

. threshold is greatly limited particularly if only one band is considered in

the calculation. Recent work in silicon [81] has shown that there exist more

than one set of parameters for the Keldysh formula if multiple bands are

considered. This is because it cannot be determined a priori which band if

- either plays the dominant role in impact ionization. It is desirable to

remove the paraneterizations of the Keldysh theory but this can only be

done by reformulating the impact ionization probability using an inverse

Auger calculation. Future work will attempt to address this problem.

4.4 Steady State Drift Velocity Theory

Little experimental data exist on the hole drift velocity in compound

semiconductors and to the author's knowledge none are available for holes in

": InP. Figure 4.13 shows both experimental [82] and calculated drift velocity

data for holes in GaAs. The experimental measurements are made for applied

* electric fields along only the <100> direction while the Monte Carlo

* calculations are made for fields oriented along the <100>, <110>, and <111>

directions. As seen from Figure 4.13, there is no significant anisotropy in

the hole drift velocity through a large range of applied electric fields.

The calculated results for the hole drift velocity in GaAs fit the

experimental data extremely well.

The hole drift velocity is somewhat higher in InP, as seen in Figure

4.14, than in GaAs despite a greater scattering rate present in InP. The

difference is only of the order of 10% which is roughly the errror in the

-. calculation. Therefore it is difficult to determine if the drift velocity

difference is due to the different band structures or is a statistical

I: -'''; .. '''''" i.:.: .' " -i . -2 - . . .: 2 -.. .......-. ..: '''' '-'''''.'.'. -.i. .-." 2:
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* error. However, a similar situation occurs in the conduction bands of GaAs -

* and InP. The work of Windhorn et al. [59,60] demonstrates that the electron

'- drift velocity is higher in InP than in GaAs at high applied fields.

Analysis of the saturation velocity of electrons in GaAs shows that it is

approximately the same, 7.0 x 106 cm/sec (58], as that for holes, 6.5 x 106

cm/sec. The saturation velocity for electrons, 7.5 x 106 cm/sec, is roughly

* the same as that for holes in InP, 7.0 x 106 cm/sec, though both are larger

than their counterparts in GaAs. It is most interesting that the saturation

velocity of both electrons and holes in each material is essentially the

same. Further experimental work is necessary to decide if the hole drift

velocity is greater in InP than in GaAs as is the case for the electrons.

4.5 Ipact Ionization -

As mentioned previously, a hole must attain an energy at least as great

as the energy band gap in order to impact ionize. Since both momentum and

energy must be conserved during an impact ionization event, often the __

threshold energy for impact ionization is significantly greater than the

band gap [71]. In GaAs and InP all three valence bands, the heavy hole,

light hole, and split-off bands extend to energies far beyond the band gap

at which impact ionization can occur. Due to the strongly anisotropic

behavior of the bands at high energy, a rigorous calculation of the

threshold energy in all directions is unfeasible. It is common then to

assume an isotropic threshold energy. The assumption of an isotropic

threshold energy is valid since the band structure is slightly smeared out

at high energy by phenomena such as collision broadening, the Stark ladder --

and intra-collisional field effects. An isotropic threshold energy is also

consistent with the random k approximation of Kane [831. If the isotropic
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threshold energy is high enough, threshold cannot be reached in certain

directions [40]. Therefore, the assumption of an isotropic ionization

threshold energy does not preclude an anisotropic impact ionization rate.

We have found that the Monte Carlo impact ionization rate calculations

P--. can be fit to the experimental results in a variety of ways. As mentioned

previously, there are two adjustable parameters, p and E in the Monte
th'

Carlo calculations. In the first set of parameters we assume that the impact

ionization behaves the same in all three bands; both p and Eth are

identical in each of the bands. For the case of GaAs, the experimental

L results are fit extremely well through a wide range of applied fields, as

seen in Figure 4.15, by using a universal threshold of 1.70 eV and a

universal p factor of 0.25. Calculations are made for applied fields along

the <100), <110>, and (111> directions. The results show that there is no

anisotropy in the impact ionization rate at high applied fields in GaAs. As

" the field decreases, there is more of a spread in the data. This may be due

to statistical uncertainty since far fewer ionization events occur at low

applied fields. A slight anisotropy in the impact ionization rate at low

*. applied fields is expected however because the 'lucky' holes should

contribute more to the impact ionization rate. At low applied fields the

* hole distribution is centered closer to k=O than at high fields. Since the

: idistribution is cooler, those holes which reach the ionization threshold do

so only after gaining much energy from the field. Maximum energy will be

*. gained from the field provided that the holes are not scattered much from

-. the field direction. A small anisotropy in the ionization rate is possible

then because a hole, due to the anisotropy of the band structure, will gain

• .different amounts of energy along different field directions per drift.

"* .-> -.--.-"-,--.-., ..- .*-f-*-,'*-*.*-*-*.. - ..- ,-,--.L
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Fig. 4.15: Calculated hole impact ionization rate in GaAs as a function of
inverse field in three crystallographic directions. The shaded -

region indicates the range of available experimental data (113.
All of the calculations are made with Set 1 parameters as
discussed in the text.
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Consequently, a hole can reach the ionization threshold energy faster for

fields applied along certain directions. At high fields the distribution is

much hotter and the holes are scattered randomly throughout the Brillouin

zone by the deformation potential scattering. Therefore the majority of

ionizing holes start from anywhere within the Brillouin zone and the

directional dependence of the rate vanishes.

The hole impact ionization rate is much lower in InP than in GaAs as

seen from a comparison of Figures 4.15 and 4.16. The Monte Carlo

calculations presented in Figure 4.16 are made using a universal impact

ionization threshold of 1.55 eV and a universal p factor of 20.0. Since the

.impact ionization rate is low in ImP, far fewer ionization events occur than

in GaAs. There is a much greater statistical uncertainty in the impact

ionization calculations in InP than in GaAs. This may explain the greater

deviation between the experimental InP data and the calculated data at low

fields.

For the cases discussed above, where the ionization threshold and p

" factor are the same for each band, the majority of ionizing holes originate

within the heavy hole band. Through the applied fields of interest here, the

* relative percentage of impact ionizing holes remains roughly constant in

GaAs. While the heavy holes contribute the most to the ionization rate, the

split-off holes contribute the least. This is true in both GaAs and InP but

the split-off holes in GaAs are more important to the overall impact

ionization rate since the split-off energy is less in GaAs than in InP.

The hole impact ionization rate is much lower in InP than in GaAs even

though the calculated threshold energy in InP is lower. The p factor used in

the InP calculation is larger as well. Therefore the relative strength of
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impact ionization, treated as a scattering mechanism, is greater in InP than

in GaAs, yet the overall ionization rate is much lower in InP. This

apparent paradox can be explained by comparing the scattering rates and

density of states between the two materials. The total phonon scattering

rate in InP is significantly larger than the total phonon scattering rate in

GaAs as seen from a comparison of Figures 4.9 and 4.10. Competing phonon

scattering processes reduce the probability of impact ionization.

Consequently, since the phonon scattering rate is much higher in InP than in

GaAs, the probability of impact ionization in InP is greatly reduced.

The difference in the scattering rates between GaAs and InP is due to

the different density of states in each material, Figure 4.17. The density

of states is significantly higher in InP at energies above 1.0 eV. When the

R density of states increases it becomes more difficult for a hole to drift to

states at and above threshold. Hence fewer holes in InP will reach high

* enough energies for impact ionization to occur.

Recent experimental measurements of the hole impact ionization rate in

AlGaSb alloys suggest that the impact ionization is strongly influenced by

.- holes in the split-off band [84,85]. Hildebrand et al. (84,85] have

suggested that a 'resonance' occurs in the impact ionization rate when the

split-off energy is equal to the energy band gap. Even though no

'resonance', as defined by Hildebrand [84], can occur in either GaAs or InP,

since the energy gap is much larger than the split-off energy, based on

these results it appears likely that the split-off band can be the dominant

factor in hole impact ionization contrary to the previously presented

results. We have found an additional set of parameters for GaAs such that

the split-off holes are the dominant impact ionizing carriers. In this case

r-
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the threshold for impact ionization in the split-off band is equal to the

band gap energy, while the ionization threshold ii significantly higher in

both the heavy and light hole bands. The p value remains the same as before

in GaAs, p=0.25, for all three bands. Eth for the heavy and light holes isInh

1.80 eV. The hole impact ionization rate using these parameters is presented

for GaAs in Figure 4.18. Again the calculations fit the experimental data

well through a wide range of applied electric fields. There is also no

orientation dependence in the impact ionization rate.

The difference between the hole impact ionization rates in GaAs and InP

1' in this case is easily explained. The split-off energy is much larger in InP

. than in GaAs. The density of states in the split-off band then is much

smaller in InP than in GaAs at or near the ionization threshold energy.

3Consequently, transfer of holes to the split-off band in InP is more

unlikely than in GaAs at an energy near the impact ionization threshold

energy. Results from the Monte Carlo simulation indicate that the

* experimental data in InP cannot be fit by assuming that the impact

ionization is due largely to the split-.-'f holes. From this result, it

appears that the split-off band does not affect the impact ionization rate

significantly unless the split-off energy is small with respect to the band

gap energy or the split-off energy is exactly equal to the band gap energy

-. such that a 'resonance' in the impact ionization rate can occur.
I

Based upon the above Monte Carlo calculations it cannot be uniquely

" determined which physical picture is correct in GaAs; the hole impact

ionization rate is dominated by the split-off band or the heavy hole band.

In Chapter 5 the nature of the 'resonance' effect in GaAlSb will be

" discussed and how the split-off band further influences hole impact

I
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All of the calculations are made with Set 2 parameters as
discussed in the text.
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ionization.

In Chapter 3, we determined the electron impact ionization rate in both

GaAs and InP. The results of these calculations were presented along with

the experimental measurements (11,121 in Figures 3.14 and 3.15. Comparison

of these curves with Figures 4.15 and 4.16 indicates that a is greater than

Sin GaAs while is greater than a in InP.

The results from Chapter 3 reveal that the electron ionization

threshold energy in GaAs is 1.70 eV and the p factor is given as 0.5. In InP

the ionization threshold energy is 1.55 eV while the p factor for electron

impact ionization is 0.5. Comparing the results of the electron and hole

• iimpact ionization rates reveals that the ionization threshold energy is the

same for both electrons and holes in GaAs, 1.70 eV, while the p factors

differ by a factor of two. The ionization threshold energy for hole impact

ionization, 1.55 eV, is much smaller than the threshold for electron

ionization, 2.10 eV, in InP.

The density of states in the valence band is much flatter than the

* density of states in the conduction band in either GaAs or InP as seen from

a comparison of Figures 4.17 and 3.16. Therefore it is easier for an

.* electron to drift to higher energies than a hole even though the phonon

* scattering rates are comparable. Consequently, one expects the electron

impact ionization rate to be greater than the hole inoization rate if the

* threshold energies are the same. This is the case in GaAs and the electron

impact ionization rate is much stronger than the hole ionization rate.

I However in InP the hole threshold is much smaller than the electron

threshold. The difference in the thresholds is sufficiently large enough

that it is easier for the holes to impact ionize. Consequently, is greater

I-
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than a in InP.

4.6. Conclusions

We have calculated, via a Monte Carlo approach, the impact ionization

rate and steady state drift velocities of holes in GaAs and InP. Two models

of hole impact ionization have been presented. The first model assumes a

universal threshold energy for the heavy hole, light hole, and split-off

bands. This model predicts that the heavy holes are the dominant ionizing

agents. The second model assumes a much smaller threshold in the split-off

- band which results in the split-off holes dominating the impact ionization "

process. Either model is equally acceptable since both fit the experimental

data well through a wide range of applied electric fields. A small

anisotropy in the impact ionization rate is observed at low fields, while no

anisbtropy occurs using either model at high fields.

Previously calculated results of the electron impact ionization rate in

GaAs and InP are compared with the hole ionization rate presented here. The

comparison shows that the electron impact ionization rate is greater than

the hole impact ionization rate in GaAs while in InP the hole ionization

rate is larger than the electron ionization rate in accordance with recent

experimental measurements. The reversal in the ratio of a and may be due

to the tremendous difference between the density of states of the conduction

S and Pil that of the valence band, as well as the different electron and

-" hole ionization threshold energies.

, -. -.-. .*., .... .- < ,..- . .* . - .. - . .- , . . .. . -. .. -. - -.-*** . .~- . . -. ,.~ . . . *. , .- .. . . ., ,'. '. .. , ,.
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. STRADW STATE ROLE M SPORT Ga AND Al ...Sb

5.1 Introduction

As discussed in Chapter 4, it cannot be determined, based upon the

calculations made in GaAs, which valence band dominates the hole impact

ionization rate. The existing experimental data can be fit in a variety of

ways using the Monte Carlo method. For one choice of parameters, holes in

* . the heavy hole band dominate the impact ionization process, while for

another choice holes in the split-off band are dominant. Recent experimental

* -measurements (84,85] seem to indicate that the split-off band plays a

significant role in hole impact ionization. A possible 'resonance' in the

hole impact ionization rate may occur in materials in which the split-off

energy, A, is equal to the energy gap, E In this chapter the nature of

this 'resonance' and the effect of the split-off band in hole impact

ionization will be further explored.

*. 5.2 Review of Experimental Results

The measurements of the hole impact ionization rate in GaSb and

AlxGaI xSb made by Hildebrand et al. [84,85] were carried out at different

composition and temperature in order to vary the ratio of the spin-orbit

splitting to the band gap energy. They present a range of experimental data

S. which show a 'resonance' in the impact ionization rate. Their results are

S.- presented in Figure 5.1 where the ratio of hole to electron ionization

coefficients, A/a, is plotted as a function of A/E., the ratio of the

split-off energy to the band gap energy. As can be seen from Figure 5.1, the

-o ° .
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Fig. 5.1: Experimental variation of the ratio of hole to electron impact
ionization rates in Ga1 AlSb with alloy composition, x, and
ratio of the spin-orbit splitting energy# A. to the band gap
energy, E 9(84,85]. 1
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ratio of A/a increases drastically as the ratio of AlE approaches one from

either direction. To explain this behavior, Hildebrand et al. [84,85]

propose that when A/E is equal to one a 'resonance' occurs in the impact
S

ionization.

rn Hildebrand et al. (84,85] claim that when the experimental data are fit

using the Shockley-Baraff theory [51,52] that the mean free path, X, has a

very strong dependence upon the alloy concentration, x. as x goes from 0.0

to 0.052. This appears to be unlikely since X depends essentially on the

phonon scattering rate which should not change drastically for small

. percentage alloys (86,87]. Therefore in order to account for the very

different impact ionization rates between GaSb and Al xGal ,Sb a different

- distribution function is necessary. They propose a rate governed by the

* following equation

= exp ()(5.1)

p This equation shows a 'resonance' as A approaches E . A physical depiction

of this 'resonant' behavior is illustrated in Figure 5.2.

Figure 5.2 schematically illustrates the hole initiated impact

ionization events from the split-off band for various ratios of A/E1 . Both

energy and momentum are simultaneously conserved in hole initiated

ionization when A = E Consequently, the hole ionization threshold energy

is a minimum when A/E = 1.0 [85] if parabolic energy bands are assumed.

*- Since the ionization coefficients depend greatly on the threshold energy .,

[50,531, the hole ionization coefficient should exhibit a maximum value at

the minimum threshold energy of A = Ego while the electron coefficient

should remain unchanged.

.'.V .'.'..'. "./..'..-.....-..-./......... "~~~~~~....-..........,.....-,.'............-.....-..........,...... .. : ...... . .--- a-.
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An alternative explanation of the data presented by Hildebrand et al.

[84,851 is proposed by Kasemset [881. Kasemset claims that it is unnecessary

to introduce a new impact ionization mechanism in order to explain the

. experimental data. Hildebrand et al. [84,851 assume that, for A > E, the

ionization threshold energy is given by A. However this choice violates the

Anderson-Crowell criteria [71]. Kasemset has also shown that the behavior of

the mean free path, X, is equally as dependent on x for the distribution

given by Equation 5.1 as for the Shockley-Baraff distribution. Hence he

concludes that the empirical function of EquiAtion 5.1 is invalid.

As an alternative explanation for the experimental data, Kasemset [88] 4

proposes that the threshold energy, Ei, does not equal A for A > E . In this

case, he proposes that the heavy holes are the predominant ionizing agents.

In conclusion, Kasemset claims that there is no "resonance" effect

associated with the change in the ratio of AE The experimental data are

then explained as due to a band structure effect. When A > E heavy holes

have the lowest threshold energy, and when A < Eg9 the split-off holes

contribute the most.

High field experimental data of the impact ionization rate in AlGaSb

and GaSb are reported by Zhingarev et al. [89,90] and Pearsall et al. [91].

Their results show no significant difference in the impact ionization rate

between the two materials. The measurements of Hildebrand et al. also show

that the 'resonance' disappears as the field increases to 50.0 kV/cm and W

above. This is not surprising, since at high electric fields, the holes are

heated to high energies where they can easily impact ionize independent of

any 'resonance' effects.

I..I
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It is interesting to note that it does not appear that both the high

and low field experimental data for GaSb can be fit using a simple ,...

exponential law. The rates between the two sets of experimental data,

Hildebrand et al. [84,85] and Zhingarev et al. [89,90], are quite different

even when the 'resonance' data are not considered. In the calculations, we

have tried to fit as best as possible both sets of experimental data

simultaneously. As we shall see, once the low field data are fit well, the '

high field data are not.

5.3 Band Structure and Phonon Scattering Rate

In the calculations of interest here, the presence of the split-off

band is of importance to the transport quantities and must be included

correctly. The valence band structures of both GaSb and the AlGaSb alloys

considered here are calculated using the K * P method of Kane [74] which

includes the spin-orbit interaction. According to our K * P calculation, the

band gap energy is equal to the split-off energy in GaAlSb when the

concentration of Al is 3.3%. We calculate the impact ionization rate for

three cases, A > E (GaSb), A - E (Al0  Ga b), and A < E
S0.033 0o.967 b ,g

(Al0.1 2Ga0. 8 8 Sb). From our K * P calculation at a 12% Al concentration, the

split-off energy is roughly 0.1 eV less than the band gap energy.

The valence band structure of GaSb is presented in Figure 5.3. The

energy band gap and the split-off energy are almost the same as can be seen

from this figure. The band structure is strongly anisotropic, and

nonspherical at high energy. Therefore it is essential that the full details

of the band structure be included in a calculation of the hole impact

ionization rate.

,,.. .. .,9 -., . ... %' '. -. ' .%. ,, .'. ... / .". ,., . .. , , , . -. . % /. .,' ,,. ,., •,'.' .'.' - ,/, ,. . '.. -_'7
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Fig. 5.3: E(k) relation for GaSb. The first conduction band is sketched
based upon the results of a pseudapotential calculation while
the valence bands are calculated Using the I P method.



80

Again we present cross sectional cuts in the Brillouin zone which show

the isoenergy lines in GaSb at high energy. Figures 5.4-5.7 illustrate the

isoenergy lines in the different cross sectional cuts presentea in Chapter

3. It is interesting to note that the energy band structure is very

anisotropic and irregular at energies above the gamma minimum.

The principal scattering agents are the same as those in GaAs and InP,

acoustic phonons, nonpolar and polar optical phonons. The scattering rate

is calculated the same way as discussed in Chapter 4. The effects of the

initial state collision broadening are less important in GaSb since the

impact ionization threshold is smaller than in either GaAs or InP.

Consequently, impact ionization can occur in GaSb at lower energy than in

either GaAs or InP. In the ternary compounds alloy scattering is omitted.

This is a reasonable approximation since the percentage of Al is very small.

The impact ionization rate is again calculated using the Kelydsh formula

[53] and the parameters, p and Eth, are determined from fitting the

calculated results to the high field experimental data [89-91].

In the Monte Carlo calculation for the ternary compounds, material

parameters, such as the density, the effective masses of the holes in each

band, and the energy band gap are determined from linear interpolation

[87,92]. The small change in the concentration of Ga in the compound upon

the addition of Al only changes these parameters by a slight amount. Their

only real effect is to slightly modify the hole-phonon scattering rate in

the calculation. This is because the scattering rate, depends to a larger

extent upon the change in the final density of states. Figure 5.8 shows the

density of states of GaSb and Al0. 0 3 3Ga0.9 6 7 Sb as a function of h le energy.

As is clearly seen from this figure, the density of states is roughly the

..................................... I.
.- . : "

. . . . . . . . . . . . . . . . . . .
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Fig. S.4: Isoenergy lines of the heavy hole band of GaSb in the cross
section of Figure 3.3. The numbers represent the energies
measured from the gamma minimum in eV.
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Fig. 5.5: Isoenergy lines of the light hole band of GaSb in the cross
section of Figure 3.3. The numbers represent the energies
measured from the Somma minimum in eV.
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Fig. S.6: Isoenergy lines of the heavy hole band of G&Sb in the cross
section of Figure 3.5. The numbers represent the energies
measured from the gamma minimum in eV.
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Fig. 5.7: Isoesergy lines of the light hole band of GaSb in the cross
section of Figure 3.5. The umbers represent the energies
measured from the gamms, minimum in eV.
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same between the two materials. Therefore the phonon scattering rate is

about the same. Any difference in the impact ionization coefficients between

these two materials must then be due to the different impact ionization

mechani sms.

5.4 Computational Method

The 'resonance' only appears at low applied fields. The impact

ionization rate at these fields is roughly 2.0 x 103 1/cm in the alloy while

it is about 1.0 x 102 in GaSb. Because the impact ionization rates are very

small it is difficult to obtain reliable statistics using the Monte Carlo

method previously described. The occurrence of an impact ionization event is

sufficiently improbable at these low fields that the program can run for

many cpu hours without one event occurring. Consequently, it is not

efficient to simply run the program without further changes.

An alternative approach has been developed. First, the hole energy

distribution function is calculated using the Monte Carlo program. The hole

is launched at zero launching energy and its' history is accumulated over

many scatterings. The distribution function can be easily determined from

the time the hole spends in a particular energy range and from the density

of states at that range. Then holes are launched according to the high

energy tail of the distribution function. The band from which the hole

initiates from at high energy is chosen in accordance with the density of

states of each band at that energy. A particular minimum energy is chosen

and when a hole scatters to energies below this value another hole is

relaunched in its place. Clearly, if a high launching energy range is chosen

many impact ionization events can occur. The net impact ionization rate is

determined from a product of the calculated impact ionization rate for the
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holes in the high energy tail and the probability that a hole is in the high

energy tail. Consequently, fairly good statistics are accumulated for the

hole impact ionization rate at low fields.

If the suggestion of Hildebrand et al. is correct, that the impact

ionization rate in GaAlSb does have a resonance, then as shown below the

impact ionization mechanism itself must be much stronger in the split-off

band close to k-0 than in either the heavy or light hole bands. The

ionization rate in the split-off band of the alloy must be very much larger

than in GaSb as well. Since the details of the impact ionization process

itself are not known for this material system, the impact ionization

mechanism is again modeled as before using the Kelydsh formula [531 with

adjustable parameters. Since the energy band gap is less than or equal to

the split-off energy for either GaSb or Al0.0 33 Ga0 .9 67Sb the threshold

energy for impact ionization in the split-off band is taken to be the

split-off energy, A. Therefore, all the states in the split-off band are at

or above the threshold energy including those near k=0. For the case A < E -

(Ga0.8 8AI0.1 2 Sb) holes near k=O cannot impact ionize since these states lie

below the impact ionization threshold energy. The resonance can be modeled

by assuming that the impact ionization probability for holes within the

split-off band near k=0.0 is essentially infinite for A > Eg* This can be

accomplished by assuming that the p factor is very large at that point. Te

have chosen a p factor of 1.0 x 105 for the resonance condition.

Ordinarily, high in the band and far away from the gamma point, a much

smaller value of p is appropriate [24]. To fit the experimental data,

however, a very high p value is needed near the bottom of the split-off

band. This suggests that at gamma the impact ionization is greatly enhanced

0o.

S~~'S ~- ...
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for holes above the threshold energy.

Since a first principle theory is not available for the impact

ionization rate in the split-off band, a mechanism is chosen which exhibits

a sharp increase over a small energy range close to gamma. In this model we

choose a large p factor, hence a large impact ionization probability, for a

limited energy range. Above this energy range we use a smaller p value,

0.20.

5.5 Results of the Imact Ionization Calculation

In the absence of steady state hole drift velocity data, it is """

difficult to determine the overall hole-phonon scattering rate with

precision. For low energies, we calculate the rate in the Born approximation

using the results of Costato and Reggiani [76,77] and the parameters in

Tables A2.6 and A2.7 of Appendix 2. The nonpolar optical phonon deformation

potential constant is not known to any great precision. An empirical

relation has been given by Wiley [8] relating the optical and the acoustic

deformation potential constants. This relation has been used for the initial

calculations ( Set 1 ).

The high energy rate is calculated using the self-energy method and is

adjusted to fit the low energy scattering rate at an energy of .5 eV. The

scattering rate obtained in this way is displayed in Figure 5.9 and is

labeled Set 1. The results for the impact ionization calculation are shown

in Figure 5.10. Notice that, at high fields, the calculated impact

ionization rate data match the experimental data quite well. However, at low

applied electric fields the calculated data are much less than the

experimental data. For this calculation we choose an impact ionization

. . . .. .. % . o . * - - . ,. -o oo -. - •o° o, ,. • o- - . ' o-. o . o .. . °o. ° o , o ° % " ° -
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Fig. 5.10: Hole impact ionization rate in GaSb and in AlGaSb as a function

of inverse applied electric field. The experimental data are

from Hildebrand et al. (84,851 and Zhingarev et al. (89,901. The

calculations are made with the Set 1 parameters and scattering

rate as described in the text.
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threshold energy for both the heavy and light hole bands to be the same,

b -0.80 eV. The p factor used in the impact ionization rate mechanism is

100.0. The same parameters are used in the GaSb calculation as in the GaAlSb

calculation. This appears to be physically reasonable since one does not

expect from the virtual crystal approximation for there to be much of a

difference in the deformation potentials of the heavy and light hole bands

between the binary and the dilute alloy. The impact ionization rate is found

to bc completely dominated by holes within the heavy hole band. For this set

of parameters, no impact ionization events occur due to holes in the split-

off band.
.' r

For the case of the Set 1 calculations, the scattering rate is so large

that the holes cannot reach the ionization threshold energy at low applied

electric fields in any of the three bands. In order to fit the low field

. -. experimental data then, it is necessary to reduce the scattering rate such

that the holes can drift to high enough energy in order to impact ionize. We

choose to simply reduce tthe scattering rate by changing the deformation

potential constant.

* Figure 5.11 illustrates the results of the impact ionization

calculation using a reduced scattering rate, -40.0% of the original rate,

which is labeled as Set 2 in Figure 5.9. In order to fit the experimental

data, the threshold energy and p factors must be adjusted for each band. The

threshold energy for impact ionization in the heavy and light hole bands is

1.05 eV while the p factor, for the best fit, is 0.20 in the heavy hole band

and 1.0 in the light hole band. Again the same parameters are used for the

binary and the alloy. The p factor in the split-off band near the gamma

point is 1.0 x I05 while it is 1.0 away from the gamma point. The low field

...-..-.. .. ...-... -... _. ........... ...-. ..-.. ... :. . -...-...... .... ,.-.,-,.-.-- .... ......-- ,.. .... -.... -
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Fig. 5.11: Hole impact ionization rate in GaSb and in AlGaSb as a function
of inverse applied electric field. The experimental data are
from Hildebrand et al. (84,851 and Zhingarev et al. (89,90]. The
calculations are made with the Set 2 parameters and scattering
rate as described in the text.
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data in GaSb are fit rather well but no resonance is evident in the

calculation for the alloy. This appears to be due to the large number of

* heavy and light holes impact ionizing in both materials. Roughly 50. of the

holes impact ionize from the heavy and light hole bands in this case.

The reason why the heavy and light hole bands contribute so much to the

impact ionization rate is because the density of states is larger in each of

I- these bands than in the split-off band. Therefore, the holes are easily

scattered into either band, particularly the heavy hole band, and tend to

stay within them. In order for the resonance to occur, it is necessary for

the vast majority of the holes to impact ionize from the split-off band.

This can only be accomplished if enough holes are scattered into the split-

off band from which they can impact ionize before they ionize from either

the heavy or light hole bands. It is necessary for the holes to drift to an

energy sufficiently high that the density of states within the split-off

band is appreciable before the holes can be scattered into it. Therefore, in

order for the resonance to be possible, the impact ionization threshold

energy must be high within the heavy and light hole bands.

Extensive numerical calculations for various sets of parameters as

described above showed that the resonance data can be fit using a scattering

rate - 18% of the original rate from Costato and Reggiani [76,77], which is

-" labeled as Set 3 in Figure 5.9. The results are depicted in Figure 5.12.

The ionization threshold energy for the heavy and light hole bands is 1.40

* eV, while the p factor is 0.10 in the heavy hole band and 1.00 in the light

hole band. The impact ionization mechanism is multivalued within the split-

off band; p is given as 1.0 x 10 for states near the gamma point, and 0.20

- for states at higher energies away from the gamma point.

* *. .
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Fig. 5.12: Hole impact ionization rate in GaSb and in GaAlSb as a function
of inverse applied electric field. The experimental data are
from Hildebrand et al. [84,85] and Zhingarev et al. (89,901. T-he
calculations are made with the Set 3 parameters and scattering
rate as described in the text. The impact ionization formula is
multivalued with a large p factor near the top of the split-off
band.
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5.6 Conclusions

It appears that the resonance in the impact ionization rate can be

explained if the hole-phonon scattering rate is very weak, much lower than

that determined for GaAs and InP, and if the heavy and light hole impact

ionization threshold energies are very high, 1.40 eV, twice the value of the

band gap energy. In order to fit the experimental data of Hildebrand et al.

[84,85], the impact ionization process must be dominated by holes in the

split-off band. It is found that impact ionization of heavy holes cannot

contribute by more than a few percent. Consequently, the suggestion of

Kasemset [88] that the resonance is a band structure effect does not seem

to be consistent with our simulation since he proposes that the heavy holes

are the dominant ionizing agents when the resonance is not present (as in

GaSb). We must conclude, therefore, that the only way in which the

experimental data of Hildebrand et al. (84,85] can be fit is if the vast

majority of holes impact ionize from the split-off band and if the impact

ionization mechanism itself shows resonance behavior.

It is possible that there is yet another explanation of the data

presented by Hildebrand et al. [84,85]. Instead of a k-space resonance, the

enhanced impact ionization rate in the alloy can bs due to a real space

effect. Clustering in the alloy can lead to local high fields which can

accelerate the hole to high energies and cause impact ionization. Further

experimental measurements are necessary in order to determine beyond any

doubt which model is correct.

....... .......... .......... .
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6. * TRM ELCTRONIC TRANSPOT TNOR

6.1. Introduction

Much attention has been given lately to devices based upon collision-

free or near-collision-free transport [93-98]. High energy injection has

been shown to increase substantially the achievable electron velocities [151

and new device geometries have been proposed for its realization [99-100].

The recent work by Tang and Hess [15] investigated in detail the average

drift velocities and scattering events following high energy injection in

GaAs using a Monte Carlo simulation method. They have concluded that a

small "collision-free window" (C1W) exists in GaAs with respect to

parameters such as electric field, injection energy, external voltage, and

device dimensions. Certain regions of devices, particularly the emitter-

base or source region, can be operated within the CFW and will exhibit very

high average drift velocities. Regions which exhibit a high voltage drop

(collector or drain in common ET's) are outside the CIFW and will form a

bottleneck in high speed operation. In the case of GaAs, this means that

all voltages typically have to stay below 0.3 V if collision-free transport

is expected in all device regions.

Recently, InP has also been suggested as a likely (and maybe even more

promising) candidate for novel device applications. In spite of great

difficulties in the fabrication and tailoring of this material, there are

theoretical indications that InP will outperform other compounds,

specifically GaAs, due to the large energy separation between the central

and satellite valleys and due to the different surface properties.



97

The research performed by Tang and Hess [15] investigated the transient

3 behavior of electrons inj-eted into GaAs at high energies and accelerated by

constant electric fields via a Monte Carlo approach. They have shown that

high transient velocities for electrons injected at high energies persist in

GaAs over a typical length of 1000 1, provided that the external fields do

not accelerate the electrons to energies far above the satellite valley

minima. One of their principal conclusions is that the high electron

velocities are due to those electrons that escape intervalley scattering

processes.

In this Chapter, the same physical model will be applied to electronic

transport in InP, InAs, and heterostructures. Again, we use a complete band

structure based on the pseudopotential calculation as discussed in Chapter

3. The electron is injected into the various materials of interest, where it

is then accelerated (decelerated) by a constant electric field. In Chapter

7, transient hole transport will be discussed using the same physical model

as presented here.

6.2 Basic Computational Method

The most essential difference between the computational method

discussed in Chapters 3, 4 and 5 and the method that is discussed here is

that in a steady state analysis the results are time independent. The

initial condition of the carrier is arbitrary; the results should not depend

upon the specified initial conditions in a steady state calculation.

Conversely, in a transient analysis the results depend immensely upon the

initial and other boundary conditions. The transient method is better

adapted to modeling transport in the submicron regime because of its

.. sensitivity to time dependent phenomena.

IV
. -... -.. ..... ....
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The Monte Carlo program used in the calculations is very similar to the

program used in the steady state calculations. The electron-phonon

scattering rates used are exactly the same as those presented earlier in

Chapter 3, and the transport parameters are the same as those presented in

Appendix 2. The primary difference in the mechanics of the calculation is

that the trajectory of the electron must be traced in real space as well as.

in k-space. In all of the calculations we accumulate one dimensional

transport quantities in real space. The initial conditions of the electron,

particularly its energy and momentum, are specified at the beginning of the

simulation. The assumption of ergodicity, crucial in a steady-state

simulation, no longer applies in a transient simulation. Instead, an

ensemble of electrons must be studied. The particular scheme used here

involves launching one electron, tracing its history as it moves through the

device, and then returning to relaunch another electron. The simulation

continues until a sufficient number of carriers are studied and the relevant

transport quantities are determined. In the calculations presented here,

roughly 1500 to 2000 electrons are launched. According to Glisson et al.

[101], this should yield an accuracy of - 10 for each measured quantity.

It is desired to evaluate the progress of the electron as it moves

through the device. Quantities such as the drift velocity, average number of

scatterings, average energy, etc. must be determined as a function of either

time of flight or of distance traveled in real space. In all of the work

reported here, the carrier's progress is monitored as a function of real

space distance. In most of the calculations, the methodology for determining

the velocity as a function of x is based on an examination of the electron

behavior at different planes along the x-axis. We subdivide the length of

* . *.
*o • o
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the device into a series of planes and examine the electrons as they cross

each plane. This corresponds physically to taking a "snapshot" of the

motion of the electrons at a certain point in real space. As an electron

crosses a plane at a given device length, we treat it as if it had been

swept out. Thus, we are modeling a progressively growing device and the

drift velocity calculated at each plane is that corresponding to a device of

- .the length up to that point. Another study, including backscattering at the

end of the device, has also been performed. The full details of each of

these methods is presented in Appendix 1.

6.3 Transport in GaAs, InP, and InAs

High applied fields can produce velocity overshoot over small distances

by driving the electrons to velocities above the corresponding steady state

velocity. Figure 6.1 shows the transient electron velocity in GaAs as a

function of distance for various applied fields at zero launching energy.

- At low applied fields, 1 kV/cm, the velocity does not overshoot the steady

m state value by a large amount. Not much is gained in the average speed of

the carriers over that for the steady state at low fields and low injection

" energy. As the field is increased, the velocity overshoots the steady state

significantly. This can be seen for GaAs at fields of 10 and 30 kV/cm. The

electron transit time at these fields will be substantially reduced by the

- overshoot from that for electrons at the steady state velocity. However as

the applied field is increased more, the overshoot dramatically decreases

. due to the transferred electron effect. Owing to the large density of

states within the satellite valleys, upon transferring, the electron drift IL

velocity decreases sharply. Clearly there is only a limited range of

* applied fields that will lead to substantial velocity overshoot through a

I .e
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range of 1000-1500 1 in GaAs.

Since the valley separation energy is greater in InP, it is expected

that velocity overshoot can be attained at higher applied fields than in

GaAs. Figure 6.2 illustrates the electron drift velocity as a function of

"* distance in InP for various fields at zero launching energy. As is readily

seen from the figure, high drift velocities are maintained over long

distances at higher applied fields in InP. Devices made of InP can be

* operated then at greater applied voltages and still show velocity overshoot.

Velocity overshoot can be accomplished in a different way by launching

the electrons at energies above the gamma point. High energy injection at

various energies is possible using heterobarriers with different band edge

discontinuities. In this way, the electrons start with velocities much

larger than the steady state drift velocity. Figure 6.3 shows the electron

velocity as a function of distance for various launching energies in GaAs at

an applied field of 10 kV/c . At zero and low launching energies the

overshoot is very small and little is gained from the steady state. If the

electrons are launched at energies above or near the intervalley threshold,

"* the electrons can be easily accelerated to energies where they will transfer

to the satellite valleys. This results in a sharp drop in the velocity and

there is no gain from the overshoot. In GaAs the window of launching

energies that gives rise to high drift velocities over distances of 1000-

1500 1 is from 0.1-0.3 eV.

In InP the range of launching energies which result in a high drift

velocity throughout device lengths of 1000-1500 1 is greater than in GaAs as

seen in Figure 6.4. Again, at low energy injection the overshoot of the

drift velocity is minimal. The overshoot is appreciable at launching

,........,................% %-.-*-.-. . ..-.-.. *...-.. ,
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Fig. 6.4: Average electron drift velocity versus device length with the
launching energy as a parameter in InP for an applied field ofe
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energies from 0.1-0.5 eV in ImP. At launching energies above 0.5 eV the

electrons are easily transferred to the satellite valleys and the drift

velocity greatly diminishes. From the previous results we conclude that

IP is better suited than GaAs for devices based on velocity overshoot.

The physical explanation for this velocity versus distance behavior

exhibited in Figures 6.1-6.4 is simple. The electrons initially assume the

small effective mass of the central, gamma valley, whereupon they are

accelerated by the electric field in the forward direction. For modest

injection energies and electric fields, electrons suffer little intervalley

scattering; most electrons move up in energy with little or modest polar

. optical scattering in the central valley, thereby raising the ensemble

average of the electron drift velocity. However, for injection energies

approaching the L and I minima and strong electric fields, the electrons are

promoted to the high effective-mass satellite X and L valleys. Strong

,. intervalley scattering occurs which reduces the drift velocity of carriers

*after a relatively short transit distance.

Figure 6.5 shows the percentage of unscattered electrons as a function

of electron transit distance in InP. Initially, more electrons are scattered

at low fields; this situation reverses as the electrons move through the

device. The electrons experiencing high fields encounter greater scattering

than those in low fields due to the introduction of intervalley scattering

at high energies. As seein from Figure 6.6, high field electrons in InP are

scattered more frequently since intervalley scattering is much more probable

. than polar optical scattering.
Z

The drift velocity in InAs is strongly affected by the presence of%

impact ionization as discussed in Chapter 3. When impact ionization occurs,

.',' ".' '.'','- ,'.." '-'.-'..'.-'.
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very high steady state drift velocities are possible as we have seen.

Figure 6.7 shows the transient electron drift velocity in InAs as a function

of distance for various electric fields at zero launching energy and in the

presence of impact ionization. Extremely high drift velocities are

attained, greater than l.0x10 cm/sec, for most applied fields. Figures 6.8

and 6.9 show the effect of launcLhng the electron at high energies. Notice

that high velocities are attained throughout the entire structure for all

the applied fields up until transfer becomes significant. Only at very high

fields does transfer occur and the drift velocity is not lowered as

drastically as it is in InP and GaAs. When impact ionization does not occur

the behavior of the drift velocity is very different. Figure 6.10 shows the

effect of neglecting impact ionization on the drift velocity following high

energy injection. Transfer occurs readily for high applied fields and there

is little significant overshoot in the drift velocity. InAs does not appear

to be a promising material for high speed devices based upon velocity -7

overshoot, since impact ionization is necessary in order to attain high

drift velocities. This should be avoided in real device applications.

The previous results can be summarized by considering the carrier " "

transit time through the entire structure for each of the three materials.

The transit time as a function of applied field for electrons injected at

zero energy is plotted in Figure 6.11. The transit time based on the steady

state drift velocity of the electrons in InP is also plotted for comparison.

As can be readily seen from Figure 6.11, there exists a range of applied

fields in each of the three materials in which high speed transport is

possible. The range of field values is very small in GaAs but is larger in

InP. The electron transit time is extremely small in InAs over a very large

..................................................................................



109

II

pii

' I0l * , , ,

•ona--
0 §0

&a

(Oe~~lWO)C Oo!<lA ,!C]:

00

C: 0 
0- 0

(0L CC) a-

010

60

* 0

I~ 0 co I~ 0

. ... . . . . .... . .



110

OL N

o<

00

0 a

0_ 0 C

< iOo11 c:

C: 0 00 -
-0 - o

040
C~~~j~ 0 o T
(ogs/wo 401900J



0 as

0 
U

0
0 1

0. <

0O cn* 0

roo

00
-0

0*

LO 
0.A

0(3

C~~j co JC

E0SLO J009 A



112

00

- -4-~O

o0 0

0 >

0C) a

CLC

0 >w

a 0 '0 
-9.

00
x JC;

CX)rCD

(39/LO) 009A0I0

.. .. . 0. . .



113

CY

-o
cSn

- c

U) 0 ~ 0

C~o

-~ .Y.C

(oasd 901G(] q qno1)

aw>!qhJ@6JA



. . .* . .... ............ .E L .' . I. . .. . . . . .i it i - ,

114

range of applied fields. However, this is true only when impact ionization

occurs. Notice that there is very little improvement in the transit time

over the steady state result for very low applied fields at zero launching

energy. Even at higher fields the overshoot does not drastically improve

the transit time of the electrons when they are launched at zero energy.

Figure 6.12 shows the transit time as a function of applied field at high

launching energy. Again the transit time for the steady state velocity is

plotted for InP. The overshoot is more substantial at high launching energy

and there is a fair improvement over the steady state transit time at low

applied fields. However the gain is much less than an order of magnitude.

The transit time in InAs is calculated with and without impact ionization.

When impact ionization does not occur, the transit time increases

substantially at high fields and the overshoot is minimal.

In device applications, in order for velocity overshoot to meaningfully

influence operation speed, the entire structure will need to be on the order

of 1000 1. The collecting region as well as the collecting contact can

greatly influence the high speed behavior. The next section discusses the

effect of the collecting contact upon the overall high speed behavior of the

device. It is expected that the results presented above are an optimistic

estimate of the effect of velocity overshoot.

6.4 Effect of Collecting Contact

In the above calculations the effects of the collecting contact were

eliminated by extending the device beyond the range of interest or by

assuming an ideal sweep-out of the electrons. In a real device there exists

a somewhat abrupt change at the semiconductor-contact interface. While the

precise nature of this interface is not known, its behavior can be

- -..- ,, -,,~~~~~~~ ~~~.. .,.. .. . . . . ...... . ..- la/m~dlii~mldln m. .... . .. . . ..
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approximated by a variable reflection coefficient (backscattering by the

high density of ionized donors). We assume that any electron that is

transmitted across the semiconductor-contact interface is swept out and

cannot return to the device. Only as it crosses the interface can the

electron by scattered back into the semiconductor. This can be considered

ideal contact behavior.

In these calculations it is essential that a model that includes full

backscattering at the end of the device is used. The full details are

presented in Appendix 1. Using the bin model the net average drift velocity

is the average over the entire ensemble of electrons. The velocity and time

spent in each bin for a given electron are continuously recorded until the

electron successfully passes through the device into the contact and is .

collected. In this way, we take into account the effects of backscattered

electrons. Those electrons that are scattered all the way back to the

initial starting point are reflected and recontinue their flight in the

forward direction.

At the collecting contact, however, the electron may be transmitted or

reflected. We select a random number between zero and one and compare this

to a selected reflection coefficient. If the random number is greater than

the reflection coefficient, the electron is transmitted into the contact and

is collected. Otherwise, it is reflected back into the semiconductor.

Figure 6.13 shows the drift velocity versus distance through the device

as a function of the reflection coefficient at an applied field of 10 kV/cm.

The reflection coefficient varies from 0.0 to 0.70. A reflection 14

coefficient of 0.0 implies that all of the electrons are swept out of the

device at the contact interface. The electron drift velocity at the contact

. . . . ..
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cannot be any faster than that of this case since there are no

backscatterings present at the contact. As the reflection coefficient

increases, the drift velocity throughout the entire device is seen to

decrease substantially. At reflection coefficients of 0.30 and higher the

drift velocity is reduced so much that the initial overshoot vanishes. This -

counteracts the otherwise possible high speed performance of the device.

Curve g corresponds to the case of a long device, where the semiconductor

structure is continued for an additional 200 1 beyond the contact plane,

which is identical to the completely swept-out case.

Figure 6.14 is similar to that of Figure 6.13 except that the applied

field is 30 kV/cm. Again, we see that the drift velocity throughout the

device is substantially lowered by increasing the reflection coefficient.

Finally, Figure 6.15 shows these results at an applied field of 70 kV/cm.

As can be seen the effect of the reflection at the contact is less drastic

at higher applied fields. This can easily be understood in terms of the

transfer mechanism in InP. At low fields the electrons remain in the

central valley where the density of states is low, so the electron drift

velocities are much higher. Therefore, upon reflection at the second

contact the electrons will travel at a high velocity in the reverse

direction. The only scattering agents they encounter within the central

valley are polar optical phonons. Due to the focusing effect of polar

optical scattering [17] the electrons are not scattered much from the field

direction. Hence, they are decelerated by the applied field until they

begin to drift again in the field direction. The overall speed of the

ensemble is thus sharply reduced. At higher fields the electrons populate

the satellite valleys where the density of states is much higher and their

..........-.-..-. . l-..................................... m........... . ...
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drift velocities are much lower. Upon reflection the electrons then travel

3 at a lower velocity in the reverse direction. Within the satellite valleys

the electrons encounter a rather high scattering rate due to intervalley

scattering. Since intervalley scattering randomizes the electron k vector,

as the electron can be easily scattered back in the forward field direction.

Therefore, the electrons will not travel as far back in the device before

they resume their forward motion. Hence, the effect of the backscattering

at the contact at high fields only influences the drift velocity near the

end of the device. This can be seen from a comparison of Figures 6.13 and

6.15. At a high reflection coefficient the drift velocity over the entire

range of the device is severely lowered at 10 kV/cm while at 70 kY/cm the

only change in the drift velocity is near the very end of the device. The

average velocity in this case, however, is always rather low.

Figure 6.16 shows the average transit time through the device as a

function of electric field with the reflection coefficient as a parameter.

For the case of no reflection at the contact (curve b) there is a marked

minimum in the transit time at a field of 10 kV/cm. This minimum

* corresponds to the collision-free window discussed previously. As the

reflection coefficient increases, the transit time increases drastically in

this range until the curve partially flattens, smearing out the collision-

free window.

We have shown that the behavior of the collecting contact greatly

affects the average drift velocity of the electrons in a small device. The

ensemble drift velocity is drastically reduced throughout the entire device

at fields of 10-30 kV/cm in InP. Depending upon how large the reflection

coefficient is at the collecting contact, the collision-free window can be

-............ .. . . . . .. . . . .. . . . .
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smeared out. As the applied field increases, the effect of the contact is

less important. However, the maximum drift velocities obtainable are much

lower than at low fields. This suggests that the •:esence of a real

collecting contact will drastically limit the performance of devices based -.-

on "near collision-free" (ballistic) transport.

6.5 Electronic Transport in Staircase Heterostructures

As discussed in Section 6.3, velocity overshoot is only substantial

over fairly short distances, roughly 1500 X. As seen from the above

calculations, the extent of the velocity overshoot is severely limited by

both the initial conditions and the applied electric field. To be useful in

a real device application, it is desirable that the carrier initially has a

very large velocity and retains it all the way through a realistically long,

-0.5 pm or more in length, device. Recently, Cooper et al. (102] have

proposed a repeated step-like structure which enhances the velocity through

repeated overshoot. In this chapter, we will discuss an alternative approach

using staircase heterostructures which can produce extended velocity

overshoot over distances of 0.5 m or more.

In Section 6.3, we showed that impact ionization in InAs limits the

electron's kinetic energy such that it stays within the gamma valley

throughout a length of 1500 or more. Since the energy gap is very small,

-0.40 eV, and the satellite valley separation energies are much larger, >

1.0 eV, impact ionization occurs more readily than intervalley trensfer. The

electrons gain energy from the field until they reach the threshold for

* impact ionization whereupon they ionize and lose most of their kinetic

energy. In this way, the electrons are prevented from transferring to the

satellite valleys in InAs and the resulting average velocity is very high.

-i "-' b -" - .': ' : .-.- -- ." - . -' ' ' -: -.- ' i '' ... -. -° :. -• -" :: .-" : 'i" -" i -- ," ,- : °: .-,- .-. .
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However, this is of little practical value since it is undesirable to have

carrier multiplication in most device applications.

A similar effect can be achieved, however, if we let the electrons

"climb" a step-like potential structure (introduced, e.g., by the band edge

discontinuity of Al xGalxAs-GaAs layers) under the influence of an overlaid

applied field [Fig.6.17]. After being launched from a high energy barrier

the electrons are accelerated by an external electric field. They gain

kinetic energy until they reach the first step. If the electrons have

sufficient energy to climb the step, they cross over into the higher

potential region where their kinetic energy is lowered by an amount equal to

the potential of the step. They continue drifting in the applied field until

they reach the next step where their kinetic energy is lowered again. The

steps remove the excess kinetic energy obtained from the applied field such

that the electrons remain within the gamma valley. This paradoxical effect

appears to be similar in nature to the impact ionization effect and also to

carrier cooling via the electron- hole interaction as proposed by Shah et

al. [103].

We have calculated, using the Monte Carlo method described above, the

velocity, as a function of position and the average electron transit time

through a structure of 0.5 jm [Fig.6.17]. We selected an applied field of

10.0 kV/cm and a launching energy of 0.20 eV from a heterobarrier for all of

the calculations since these parameters have been found to produce the

fastest velocities in GaAs. The average electron transit time for electrons

that climb the steps in a 0.5 pm structure is 0.93 psec. This is equivalent

to a velocity of 5.4x107 cm/sec. We can compare this to the average transit

time of electrons injected at the same energy and applied field but not
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subjected to the, step-like potential. The transit time for these electrons

is found to be 2.09 psec, giving an average velocity of 2.4x107 cm/sec.

Notice that the step-like structure results in a velocity enhancement by a

factor greater than two. One can also launch the electrons such that they

propagate "down" the stairs, similar to the suggestion of Cooper et al.

(1021. For the given configuration and applied electric field this results

in a much lower speed than if they are launched in the other direction. The

reason for this is that the electrons gain kinetic energy as they traverse

the steps but their velocity decreases due to the transferred electron

effect. This can be clearly seen from Figure 6.18, where we show the

relative population of the central valley as a function of distance through

the structure for the two cases. Notice that the electrons always reside in

the central valley when "climbing" the stairs (Case 1) while when they

propagate "downstairs" (Case II) most transfer to the L and X minima.

As can be seen from Fig. 6.17 the velocity of the electrons oscillates

for Case II. If one compares these oscillations to those in Fig. 6.18 it is

apparent that the velocity fluctuates because the electrons are transferred

to the satellite minima and then relax back to the gamma valley. Some relax

because an applied field of only 10.0 kV/cm is not high enough to heat the

carriers such that they all transfer to the satellite minima and remain

there.

As the length of the structure increases from 0.5 pzm to 1.0 pm, the

number of electrons which can successfully pass through the device (without

reflections at the steps) decreases, since the electrons lose too much

energy by phonon emission. It is desirable to transmit most of the

electrons through the structure in order to achieve high current densities.
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For a 0.5 pm length structure - 90% of the electrons are transmitted at high

speeds. For a length of 1.0 pm, however, - 50 % of the electrons are

reflected. Clearly one cannot build a very long structure of ascending

steps without severely limiting the current. The average electron transit

time in a 1.0 pm structure is found to be 2.41 psec which gives an average

velocity of 4.15xl07 cm/sec. This is roughly a factor of two greater than

for a structure without steps, where the transit time is 4.72 psec and the

velocity is 2.1x107 cm/sec.

t 
.
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7. "UMSK'T I[l TRhNOSItT 1 RM

As discussed in Chapter 6, under certain limited conditions of applied

electric field and initial launching energy, velocity overshoot can be

significant in compound semiconductors over distances of roughly 1500 . The

range over which velocity overshoot can be attained may be artificially

lengthened by the method discussed in Chapter 6, Section 6.5. In this

chapter, the effect of velocity overshoot on holes will be examined.

Ruch found that the electron velocity overshoots its saturation value

in both silicon and galliuw-arsenide [14]. However the velocity overshoot

persists an order of magnitude longer in GaAs than in Si due in part to the

much faster energy relaxation in Si at low energies. The electron drift

velocity also is substantially higher in GaAs than in Si at low applied

fields [44,104] because of the different effective masses of the electrons

3 in each material. In GaAs, polar optical scattering is the dominant energy

relaxation mechanism which on average is weaker than the deformation

potential scattering present in Si. Therefore, it takes longer for the

electron overshoot to relax in GaAs than in Si leading to much higher

electron drift velocities over longer distances.

The presence of heavy holes and deformation potential scattering in
t

the valence band of GaAs at low energy greatly reduces the hole velocities.

Consequently, one would expect that velocity overshoot of holes would be

limited by the strong energy relaxation much as it is in silicon. However,I"
our calculations show that velocity overshoot of holes in GaAs is

significant under certain conditions of field and launching energy. Velocity

I
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overshoot of holes in GaAs is not as pronounced as that of electrons in GaAs

but it is larger than for electrons in silicon as calculated by Ruch [44].

The calculations are made here using a Monte Carlo scheme similar to

the program described in Chapter 4. Instead of a steady state simulation we

use a transient model to analyze velocity overshoot of holes in the valence

band. The velocity estimator is based on the plane model as discussed in

Appendix 1. The hole-phonon scattering rates are calculated exactly the

same as described in Chapter 4. The holes are launched at either zero

launching energy, from the gamma point, or at 0.10 eV with a k vector of

[0.09,0.0,0.0]. High energy injection may be achieved through use of

heterostructures as described earlier in Chapter 6. In all of the

calculations the field is along the <100> direction.

Figure 7.1 shows the hole drift velocity as a function of d6vice length

for zero launching energy for various applied fields. At low applied fields,

5.0 and 10.0 kV/cm (curves a and b), the hole velocity at 1500 1 is

substantially higher than the steady state drift velocity which is shown in -

Figure 4.13 of Chapter 4. Notice that, at zero launching energy, at an

applied field of 10.0 kV/cm, the hole drift velocity is two times the steady

state value. At smaller applied fields, 5.0 kV/cm, the transient drift

velocity after 1500 1 is much higher than the steady state velocity, roughly

three times as large. As the applied field increases in magnitude the peak

drift velocity increases dramatically. At an applied field of 200.0 kV/cm

the peak drift velocity is roughly 1.8xl07  cm/sec, more than twice the

steady state velocity. However, the velocity decays much more rapidly

towards the steady state value at higher fields. The overshoot is

significant over a much smaller range and consequently is less advantageous

,!
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for device applications. As seen from a comparison of Figures 7.1 and 4.13,

after 1500 1 the hole velocity is only 20% greater than the steady state

value. Figure 7.2 shows that the transit time is not significantly different

at high applied fields from that due to carriers in steady state. However,

the transit time is greatly reduced by the overshoot at lower electric

fields of 10.0 and 5.0 kV/cm.

The effect of launching the hole from the light hole band initially is

also depicted in Figure 7.1. As is readily seen, the extent of the velocity

overshoot is greater when the holes originate in the light hole band than in

the heavy hole band. This is expected since the effective mass of the light

holes is much less than the effective mass of the heavy holes. The drift

velocity approaches, after approximately 1000 1, the result for the heavy

holes. The strong deformation potential scattering tends to scatter the

holes out of the light hole band and into the heavy hole band. Consequently,

after a short time the vast majority of the holes reside within the heavy

hole band.

The effect of launching the holes at a higher energy is shown in Figure

7.3. Holes are injected at an energy of 0.1 eV with an initial velocity of

2.8xl07 cm/sec. The initial velocity is so much greater than the steady

state velocity that the holes immediately start to relax to the steady state

value. Again the velocity overshoot persists over a longer distance at lower

applied fields. From a comparison of Figures 7.1 and 7.3 it is clear that

there is no significant gain in hole drift velocity from launching the holes

at a higher energy. The results of the calculations show that at distances

of 1000 1 the hole transit times are essentially independent of launching

energy for the energy range considered.
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We also extend the calculation to device sizes of 2500 X and the

- results are depicted in Figure 7.4. After 2500 X the hole velocity is

N" essentially at saturation, roughly 7.0x106 cm/sec, at an applied field of

100.0 kV/cm. From curves a and b it is clear that the effect of the initial

launching energy is completely lost after 2500 1. Curves c and d show that

some of the overshoot is still effective after 2500 for holes accelerated

by a field of 10.0 kV/cm. It takes much longer for the holes to reach the

saturation velocity at smaller applied fields. However, the actual magnitude

of the velocity at these fields is not large. Holes were also launched such

U that they move down a series of potential steps similar to the procedure

* proposed in Chapter 6. There is no significant difference in the drift

velocity between the cases with or without the steps.

We have shown that velocity overshoot occurs for holes in GaAs and can

lead to a substantial reduction in transit time from the steady state at low

fields. At high applied fields, the hole drift velocity can be quite large,
-9i

approximately 1.8x107 cm/sec. However, in less than 1500 1, the velocity

rapidly decays to the saturation velocity. Consequently, the transient

velocities observed for holes in GaAs do not rival in magnitude those

measured for the electrons. Nevertheless, there is a real reduction in

transit time for holes under conditions of low field. This may have some

significance in device applications.

.I %

**........ . ..........................................
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APPENDIXI1

D MAIS OF T TRANSIMIT CALCUATION

In the transient transport program it is desirable to accumulate values

of physical observables such as the average energy, drift velocity, and the

average number of scatterings as a function of distance through the device.

In the transport program used here, where electrons are launched one at a

time, the method of averaging is important. There are two general techniques

used to sample the value of the observables along the device, the plane and

bin models. In most of the calculations presented in this thesis the plane

model is used. However, the results obtained for the reflecting contact are

all calculated using the bin model. It is the purpose of this appendix to

more clearly define and distinguish between these two methods.

As previously mentioned in Chapter 6, in the plane model the velocity

as a function of distance is determined by examining the carriers as they

cross different planes along the device. This corresponds to taking a

"snapshot" of the motion of the carriers at a certain point in real space.

As a carrier crosses a plane at a given device length, we treat it as if it

had been swept out. Once the carrier crosses a plane its history (time taken

to reach that plane, energy at that plane, etc.) is accumulated. Therefore,

the time is accumulated from launch and only after an electron crosses a

plane is the time noted. Hence the velocity of the carrier then is simply

*:-' - the distance of the observing plane from the launching point times l/t,

where t represents the total time of flight to that point. The distance

I'

" • " .... .-.-. -. - -. . -. "- ".- ".".--'.-"- ".- ", ." ."".',-'..,'-'....-............."....-."......."."..".•........".............. .............-.......-......,-..-..-.-............ -...-..-. . . . ......... ,..................re......--.....
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between the planes is constant and is denoted by AX.

The average velocity of one carrier at the first plane is given by

V=-X - (A1.1) -
V

where t is the time of flight to the first plane. For many, N, electrons the

average velocity at the first plane is then

Nv _________________ /N. A1.2) -

V =Z (total time in the device till this plane) i

But we have a constant value of Ax which can be taken outside the sum,

giving

(v =~x NA.3(1ti

i=l i,-

The total transit time is then defined by

T= L V(A.)

where L is the total length of the device and v is the average velocity of

the carriers at the end of the device. If we use the technique of Equation

A1.2, then the total transit time is calculated as

N (Ai.5)

- i=1 
"

where N is the total number of electrons launched and T. is the total time

each electron spends in the device. Notice that we accumulate the sum of 1/t

rather than t above. This is because we are most interested in the current

and this estimator best represents how an ensemble of electrons contributes

to the current.

Physically, the velocity at a particular point along the device, using

the plane model, represents the average velocity of the carriers in a device

.. . .
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of that length. So the velocity at say 1000 means the average velocity of

the carriers in a device 1000 long. However, it is often desirable to know

what the velocity of the carriers is averaged over a small region of the

device rather than over the entire length up to that point. The bin method

is used to determine the velocity within small regions, bins, of roughly 50

A long. The observables are averaged over each bin separately and reflect

the value of the velocity within that region only.

The basic idea of the bin method is that the total time the carrier

spends in each bin is accumulated. Therefore, the velocity at say 1000 is

based solely on the time each carrier spends in the bin around 1000 1. This

method takes into account backscattering since the time spent in the bin is

accumulated independent of how many times each carrier drifts in and out of

the bin. The actual way in which the time and velocity are calculated is

done as follows.

The velocity is found from the product of the bin length and the sum

over the number of carriers of l/ti, where ti is the total time each carrier

spends in each bin. The total drift time in the device is found from the sum

of lVT. as before. Here Ti is again the total time each carrier spends inii i

the device. Therefore, the average total velocity should be the same in

either method but the velocity calculated along the device will be

different. In the plane model, as mentioned, the velocity is the overall

velocity up to that point. In the bin model, the velocity is the average

velocity of the carriers in that particular bin only. Figure A1.1

illustrates the results of using the bin model. This can be compared to

Figure 6.4 in which the same data are calculated using the plane model. As

one can clearly see, the plane model tends to overestimate the effects of

................................... ... ..*J*.-.-. -** -..* • .-.* - - --.-. '- .

,-.'.. .'......'.'..] '. :. - ., . .' -. *'-_- - : ... l..d.im i .-. . . . . . . .a
ni ln

n l.*n*nn. .un n m m
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14 x107

InP kxo Eo
12 F3 =0 kV/cm in <100> a 0.0 0.0

T= 300 K b 0.04 0.092
c 0.08 0.28310o d 0.10 0.416

Se 0.12 0.558

6-

4-

0 400 800 1200 1600

Distance Along the Device (A)

Fig. A1.1: Average electron drift velocity versus device length in InP at
an applied field of 30.0 kV/cm for various launching energies.
The calculation is made using the bin model as discussed in the

text.
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the velocity overshoot. The bin model, though shows that the velocity near

the end of the device is less than the average total velocity. Either model

is acceptable for use as long as it is clear what that model represents.

When a carrier crosses from one bin to another during a drift it is

necessary to calculate correctly how much time is spent in each bin. A

quadratic interpolation scheme is used which assumes during each drift that

the acceleration is constant. This is reasonable since a constant field is

assumed in each of the bins. The initial velocity, initial and final real

space positions, and total drift time are all known. From these it is easy

for one dimensional motion to calculate the acceleration. The time spent in

I' each bin is easily determined from the the real space distance traveled in

* each bin, (starting point to end of the first bin, etc.) the initial

velocity and the acceleration.

UJ

lee

ml
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Table A2.1

Parameters for GaAs Program [1051: Electrons

Parameter Value r valley L valley I valley F7

Density 5.36 g/cm 3

C 10.92

C0  12.90

Number of valleys 1 4 3

Effective mass 1 /m0 0.063 0.23 0.43

Non-parabolicity (eV " ) 0.690 0.65. 0.36

"alley separation (eV) 0.33 0.52

Te=perature 300° .

Intervallev CouDain Contacts and Phonou Enery.!es

1.0 x eV/cm 0.026 eV

r- 1.0 x L09 eV/c:m 0 .026 ev
9L-L 1.0 x 10 eV/cm 0 .026 eV

9
L-. 0.9 x 109 eV/= 0 .026 eV

9X-X 0.9 x 10 ev/cm 0 .026 eV

Polar Otical ?hoaon Enertes

0.035 eV

L 0.0343 eV

X 0.0343 eV

Accustic Scat:erini Parameters

Deformation Pocenriai 5.0 eV

Sund %Velec:'- 5.24 : 10 3 /sac
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* Table A2.2

Parameters for InP Program [1061: Electrons

Parameter Value r valley L valley X valley

Density 4.79 g/cm3

- 9.52

£12.35

Number of valleys 1 4 3

Effective mass m /m 0.078 0.26 0.325
0

Non-parabolicity (eV- ) 0.83 0.23 0.380

. Valley separation (eV) 0.54 0.775

Temperature 3000

Intervalley Coupling Constants and Phonon Energies

I-L 1.0 x 109 eV/=m 0.0278 eV

1.0 x 10 eV/cm 0.0299 eV

9
L-L 1.0 x 10 eV/cm 0.0290 eV

9
- L-X 0.9 x 10 eV/cm 0.0293 eV

X-X 0.9 x 109 eV/cm 0.0299 eV

Polar Otical Phonon Energies

r' 0.043 eV

- L 0.0423 eV

" X 0.0416 eV

Acoustic Scattering Parameters

Deformation Potential 8 eV '4

Sound Velocity 5.13 x 105 cm/sec

._ ...... . ,. :. Z- ...C %.w -- , .- _,.... -,,, h . -_ . " . ........ . .•.. . . . . . . . . . . . . . . . . .•.. . .-. , • -
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Table A2.3

Parameters for InAs Program [107]: Electrons

Parameter Value r valle, L valley X valle '

Densi7 5.67 g/cm3

co  14.55

Numbe: of valleys 1 4 3

lffec:0e mass / 0.032 0.286 0.640

ptical phonar. anergies (eV) 0.0302 0.024 0.020

Nou-pa-abolicit7 (ev-h 1.390 0. 3;26 0. 90"

Valley separa:ion (eV) .02 1.620

,aoe-at_ a 300K

"e--- ga- (eV) 0.36

6= ar--2a1!- Ccu3Linz Ccntac:s and ?hnon Ener2ies

9
T-L 1.0 x 10 ev/cin 0.027 eV"

1.0 x 109 eV/= 0.0299 eV

L-.L 1.0 :x I ev/c/ .0290 eV-

L-X 0.9 : !C eV/c= 0.0293 eV
1 9 c

0. 9 :C eV/cm 0.0299 eV

Ace-us:i: S::a.-:n ?ar-a'.crs

"e c. .- :i'. .-.--'- ..-.. . .-

.
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Table A2.4

Parameters for GaAs Transport Program: Holes

Bulk Material Parameters (105]

Lattice Constant 5.65A
Density 5.36 Z/Cm3

Energy Band Gap (T a300 K) 1.424 eV
Dielectri;c Constants

- Ca 10.92
12.9

Crystal Elastic Constants
C1 11.88 x 1011 dyries/cm-

C12  5.38 x l011 dvynes/cm2

C45.49 x I0 dynes/cz-
11001 Longitudinal Sound velocity, St~ 4.73 x 105 cm/sec
(1001 Transverse Sound velocity, St 3.34 x~ 105 cn/sec

*Steri~ Race maramete-rs (80,105]

E!!ec:tive =asses
Heavy Hole Band, MU5 0.45
Light Hole Band, nLH 0 .08Z 2
Split-off Band, in50  0.154 M

Oncical ?ho~on Zaervy 0.035 eV
Defor--acian Pocantial Constants~

-3.1 e

b 1.7 eV
d 4.& eV

moact onization Rate Para e-ers

Set I dentical for all 3 bands)
Threshold EerZy, ET" 0 1.70 eV

Factor, 0.25

Set 2
Ban~ds 1 & 2

ET' -1.80 e /;

P 0.25
Band 3

h1. 424Z ell
P 0.25

¢I..8x 01 dvnsc 2 .

.-I¢J .9xI l ye/=
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Table A2.5
Parameters for InP Hole Transport Program

Rulk Material Parameters [1061

Lattice Constant 5.868 A
Density 4.787 g/cm 3

Energy Band Gap (T - 300 K) 1.35 eV
Dielectric Constants

9.52a

Crystal Elastic Constants 12.35

C11  10.22 x 1011 dynes/cm2
Cl1  5.76 x 1011 dynes/cm2
C4 4  4.60 x loll dynes/cm2(100] Longitudinal Sound Velocity, St 5.13 x 105 cm/sec

(1001 Transverse Sound Velocity, St 3.10 x 105 cm/sec ra

Scatterine Rate Parameters [80,1061

Effective Masses
Heavy Hole Band, m H  0.45 Mo
Light Hole BAnd, mLH 0.12 no
Split-off Band, mSO 0.21 mo

Optical Phonon Energy 0.043 eV
Deformation Potential Constants

a 2.8 eVb 1.55 eV
d 4.4 eV

Tmvact lonizaticn Rate Parameters

(Identical for all 3 bands)
Threshold Energy, ET% 1.55 eV
Multiplicative Factor, p 20.0
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Table A2.6

Parameters For GASb Hole Transport Program

Builk Material Parameters [108]

Lattice Constant 6.095
Density 5.613 g/cm 3

Energy Band Gap (T - 300K) 0.726 eV
Dielectric Constants

14.44
co 15.69

Crystal Elastic Constants 81
C11  8.839 x 1011 dynes/cm2

C1 2  4.033 x 1011 dynes/cm 2

C44 4.316 x 1011 dynes/cm 2

[1001 Longitudinal Sound Velocity, SZ 3.97 x 105 cm/sec
[100] Transverse Sound Velocity, St 2.77 x 105  cm/sec

Scattering Rate Parameterp [80.92.1091

Effective Masses
Heavy Hole Band, mHH 0.490 mo
Light Hole Band, mLH 0.046 mo
Split-off Band, mso 0.20 mo

Optical Phonon Energy 0.0298 eV
Deformation Potential Constants

a 2.2 eV
b 2.0 eV
d 4.6 eV

Impact Ionization Rate Parameters

Threshold Energy, Eth 0.80 eV
Multiplicative Factor, p 100.0

. . - - - . . . . . . . .
. . . . . .. . . . . . . ' '-- ... . . . . . . . . . . . .
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Table A2.7

Parameters for AlSb Transport Program: Holes

Bulk Material Parametsers (1101

Lattice Constant 6.1355
Density 4.26 glc=3

Energy Band Gap (T - 300K) (direct) 2.218 ev
Dielectric Constants

to 10.24
to 12.04

Crystal Elastic Constants ldye/=
Ci1  8.939 x 101 ye/m

C1.4.425 x 1011 dynes/cm2

C44.155 x 10ll dynes/cm2

(100] Longitudinal Sound Velocity, S 4.528 x ]LOS cm/sec
(1001 Transverse Sdund Velocity, St~ 3.087 x 105 cm/sec

Scattering Rate Parameters (Ra.92,1091

Effective 'Masses
Heavy Hole Band, qM~ 0.94 M
Light Hole Band, ULH 0.14 M
Split-off Sand, in5 0  0.29

Optical Phonon Energy 0.042 eV -

Deformation Potential Constants
a 2.7 eV
b 1.35 e V
d 4.30 eV

Impact Ionization Rate Parameters

Threshold Energy, E..h 0.80 eV

Multiplicative Factor, p 100.0

27-
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APPNIDX 3

SUMMARY OF? UE SC&TIUDMIMRAN3hSMS IN IKE VALENC BAND

In this appendix, the different scattering mechanisms that have been

included in the Monte Carlo calculations of hole transport are summarized.

The low energy scattering rates are calculated by the conventional method:

the Golden rule, the Born approximation, and the effective mass density of

states.

In general the transition rate from wave vector k to k' is given by the

Golden rule as

S(k,k) 6(E - E(A31)
fi' f.

• where Hfi is the matrix element of the perturbing potential H between the %

S initial and final states. In calculations involving interband transitions it

is more convenient to separate the overlap integral explicitly from the

,. matrix element. Equation A3.1 then becomes

-- D nf 2 T ( ) (Eg-E.) (A3.2)IS(k-k') c&(','') V"f
where G(kk') is the overlap integral expressed as

2,U2

G(kk') U Sl jr) s k(r) dr (A3.3)

s s1 2

- G(kk') accounts for the overlap between the periodic parts, us,k(r), of the

wave functions in the mixing of initial and final Bloch states. The overlap

integral depends upon the symmetry properties of the initial and final state

17,

... ......................... ...
• ,......, -... - , ,.' +.. > ....... ,..+.......- .. .... '-......... .. -............... '. .-. '.-.. . . +. , +-.",
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APPEWIEX 3

oil"

SSUNWARY OF ins SCATERIS NEChNISNS IN THE VAL QCR BAND

In this appendix, the different scattering mechanisms that have been

included in the Monte Carlo calculations of hole transport are suaparized.

The low energy scattering rates are calculated by the conventional method:

the Golden rule, the Born approximation, and the effective mass density of

states.

In general the transition rate from wavvector k to k' is given by the

Golden rule as

2 6(E E (A3.1)
S~~.)fji f

where Hfi is the matrix element of the perturbing potential H between the

*initial and final states. In calculations involving interband transitions it

is more convenient to separate the overlap integral explicitly from the

matrix element. Equation A3.1 then becomes

f 21T ~ 2
o.-T I(i-k')I G(kk') 6(E fE) (A3.2)

. where G(k,k') is the overlap integral expressed as

I2

G(k,.') u (r) u (r) dr ( 3
2 - silk' sk W 3

S'2 2"-.~ ss2 -

G(k,k') accounts for the overlap between the periodic parts, uk(r) of the

wave functions in the mixing of initial and final Bloch states. The overlap

integral depends upon the symmetry properties of the initial and final state

I.°•

. . . . . . . .
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wave functions. The valence band wavefunctions for the materials of interest

here exhibit a non-spherical symmetry, mostly p-like at the top of the band

[76,77].

Wiley [751 has shown that the k-dependence of Gij, for i,j=1,2, is not

very pronounced. An approximation of Gij may be rendered which is better the

wider the energy band gap of the material is. G.. is approximated by G(O),ii

which depends only on the scattering angle, 0, and is independent of k.

* A3.1 Nonpolar Optical Scattering [761

The transition rate for nonpolar optical scattering is given by

. No 6[E(k')-E(k) - fiw] (abs.)•f 2-T 2
3j. G(S (No + 1.) 6(E(k')-E(k) + ]fiw (em.)

(A3.4)

where we have approximated G(k,k') by G(O). The matrix element is

independent of k and is given by

-2 B

(A3.5)
2 2

=.C (DK)

0

where (DK)2 is the deformation potential and 1a0 is the phonon energy. The

total scattering rate is calculated from summing over all the final states

as V N 5 B[E(k') - E(k) - f-hL] (abs.)

((2- + ) 6[rE(k') - E(k) + f,,] (em.)

0

(A3.6)

' . Using the effective mass approximation, the energy can be expressed as,

2k2 2'2
"(k) Vk' (A3.7)

2M 2M

"o 9

• .- . " -'.'. '.-, " ...",",""-.", ""..,...-..,."."...."-"-....".".".".". •":"- '"
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where

2 22 2 2
fk ,  42k ± w

2M 2M

" The integral becomes after evaluating the integrals over O and k for the

-m case of intraband scattering

B VM. N (abs.) 7
Ska G. () sin e de (A3.8)

ii +01 (em.) ( O .

where

2 2
21.W A [(DK). .]

o ' o 2p Vtw

" The integral over e can be evaluated using Wiley's [75] approximation,

GI G 22 1/4 (1 + 3 cos2  G 12 G21 3/4 sin2 a (A3.9)

The integral over e for intraband scattering is simply
iT

i() s n dO f 1/4 ( I + 3 ) sine do = 1 (A3.10)

Tr 0

'°T

'* For the case of interband scattering, l/k.. becomes ;

B VNM T
l /ri - G 3k (C) sinC dG (A3.11) .

- The integral over e for interband scattering is

fGi. (C) sine dG 3/4 sin dO ,(A3.12).

0 0

which is simply equal to 1.0.

I. I
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The hole-nonpolar optical phonon scattering rate for holes initially in

the heavy hole band is presented in Figure A3.1. As can be seen from this

Figure, the heavy hole-heavy hole scattering rate is greatest since the

final density of states is largest in the heavy hole band. The calculations

presented in Figure A3.1 are all made using the effective mass

approximation. The scattering rate from the heavy hole band to the split-off

hole band is stronger than the rate from the heavy hole band to the light

hole band. This is because the effective mass of the split-off holes is

larger than that of the light holes. At high energy the light hole band

bends strongly such that it follows the heavy hole band. Then the

effective mass approximation breaks down completely in the description of

the light hole band. Consequently, the scattering rate calculated using the

effective mass approximation is no longer valid at high hole energies. In

order to take this into account in the calculation, the relative scattering

rates between bands are calculated using the actual density of states in C

each band. Therefore, the actual scattering rate between the heavy and

split-off bands is less than is shown here.

A3.2 Acoustic Phonon Scattering [76,78]

As discussed in [76], the transition rate for intraband acoustic phonon

scattering is given by

p. A N (W)

E 2 -L x dx (A3.13)E E1/2  Nq(X) + 1

where

E Mi 
kT \

-E-

. ..... . ....... 
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ar d

Iq Vs/kT.

E, is the deformation potential constant, v. the sound velocity, p the

material density, and E s 1/2 m* v 2. N q(z) is the phonon distribution

function which can be expressed by a truncated Laurent expansion [781:

N W/x -1/2 + 1/12x - ,/72x x < 3.5 (A3.14)

q e X- 0 ,x > 3.5

The total scattering rate can then be calculated by integrating Equation

A3.13, fx 2 ."

l/'r = J f(x) dx (A3.15)

ac

where xI and x2 are listed in Table A3.1. The resulting scattering rates are

given in Table A3.2. The overlap integral is treated as in the case for

nonpolar optical scattering. Therefore G1 i(e) is given by Equation A3.10 and

the result of the integral over e is again 1.0.

The transition rate for interband scattering is given by Equation A3.13

with A given by

(EA El ! kT (A3.16)a 1 r'o V E 1/2.

s o

In this case, G ij(O)=3/4 sin 2 (e) and the result from integrating G ij() with

respect to e is given by Equation A3.12 as 1.0. The phonon energy is

determined from an average given by [24]

-d W dx Wf Exdx (A-1.17)

' " 1x ...:
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Table A3.1

integration limits for equation A31

with x - fqV S/kT.

4E *1/2
xkT s

- *1/2

4E5 *1/2 -12/2)

No emission

Absorp tion. { ;:4E1 2 1/2
2kT S

*

tx

x kT (E B
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or

The hole-acoustic phonon scattering rate is displayed in Figure A3.2.

Again the calculations are made using the effective mass approximation

through the entire energy range.

A3.3 Polar Optical ScatterinA 77]

The matrix element for polar optical scattering is given by [771

2 2-r e -ow 0 1 (A3.19)

jk-kjl v C IO C

where a. and so  are the optical and static dielectric constants

respectively. The total scattering rate is derived by summing over all the

final states as

2,r (2V~ 2-7 0
I ,2 2V 2e2o L 0 G(kk') 6 (E-E)dk' (A3.20)

2 -

. where G(k,k') is given by Equation A3.3. Evaluating the integral over k' we

obtain for intraband scattering

2T i 1 21' 2V"

1. - o 1- = 12v f sin,? G(Ae)de

i!."r 1) 2 t2k2 "
dk'k' 2 2. 2* 0

J .. k 'k"2 ) "M ( A 3 .2 1 )

(k ' - 2kk' cose-

I- ;,°
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Upon evaluating the integral over k'

2~eCol 2V M~ ()i()8(A3.22)
1 1 27.fi2 I 2

~ii L£~ £o -!i(k +k -2kk cose)

For intraband scattering, G(O) is given by Equation A3.9 as

2
G =G -1/4 (+ 3cos e
11 22

Integration of G1 (0) in Equation A3.22 finally gives,

2V ~ M. N

where2

~0V £1
L 0a

2 + Tk + j/ if
logo

kr. 2e2w (+i A

0 0

00Th aefrItradscteigi iia o h bv xet ta

-----------.. *.S-.2
GO)~~ ~ ~ beoe G (0 3/-i 0 nEuto 32.Teepeso o h
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Performing the integral over e yields

2
I 3 e3  (L -M -1 .(No

Tij 2 e. k o '[i

(A3.25)

where

T log M' 2  jo/
/Mi k' 2Mw /

k2  1 + /MJ J t ± 2M o1

2k k ti kol-

The hole-polar optical phonon scattering rate is calculated and

displayed in Figure A3.3. The effective mass approximation is used

throughout the entire energy range of the calculation.

A3.4 Treatment of the Split-Off Band

The split-off band lies at an energy, A, above the heavy and light hole

bands at the gamma point. Due to this nondegeneracy at the gamma point, the

scattering rate formulas must be slightly modified for holes scattered to

the split-off band from either the heavy or light hole bands. The situation

is analogous to that of the satellite valleys in the conduction band.

In all three scattering mechanisms, polar optical, nonpolar, and

acoustic scattering for interband processes initiating in either the heavy

or light hole bands the final energy of the hole is given as

E_ = t - , -f (A3.26)
? i
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where Ei is the initial h'ole energy in either band 1 or band 2, Im is the

phonon energy, and A is the split-off energy. If Ei + Aw or Ei - Aw < A, no

interband scattering process involving the split-off band can occur.
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